302.AI is a pay-as-you-go enterprise-level AI application platform that provides an open platform and open-source ecosystem to help AI solve various needs. Click here to get $1 free credit!
- Quick Conversion: Supports converting all GitHub, GitLab, Gitee, Gitea and other code repositories into knowledge bases within minutes.
- Multi-language Support: Supports code analysis and documentation generation for all programming languages.
- Code Structure Diagrams: Automatically generates Mermaid diagrams to help understand code structure.
- Custom Model Support: Supports custom models and custom APIs for flexible extension.
- AI Intelligent Analysis: AI-based code analysis and code relationship understanding.
- SEO Friendly: Generates SEO-friendly documentation and knowledge bases based on Next.js for easy search engine crawling.
- Conversational Interaction: Supports conversations with AI to obtain detailed code information and usage methods for deep code understanding.
- Support multiple code repositories (GitHub, GitLab, Gitee, Gitea, etc.)
- Support multiple programming languages (Python, Java, C#, JavaScript, etc.)
- Support repository management (CRUD operations on repositories)
- Support multiple AI providers (OpenAI, AzureOpenAI, Anthropic, etc.)
- Support multiple databases (SQLite, PostgreSQL, SqlServer, MySQL, etc.)
- Support multiple languages (Chinese, English, French, etc.)
- Support uploading ZIP files and local files
- Provide data fine-tuning platform to generate fine-tuning datasets
- Support directory-level repository management with dynamic directory and document generation
- Support repository directory modification management
- Support user management (CRUD operations on users)
- Support user permission management
- Support repository-level generation of different fine-tuning framework datasets
OpenDeepWiki is an open-source project inspired by DeepWiki, developed based on .NET 9 and Semantic Kernel. It aims to help developers better understand and utilize code repositories, providing features such as code analysis, documentation generation, and knowledge graph construction.
Main Features:
- Analyze code structure
- Understand repository core concepts
- Generate code documentation
- Automatically generate README.md for code
- Support MCP (Model Context Protocol)
OpenDeepWiki supports the MCP protocol:
- Can serve as a single repository MCPServer for repository analysis.
Example configuration:
{
"mcpServers": {
"OpenDeepWiki":{
"url": "http://Your OpenDeepWiki service IP:port/sse?owner=AIDotNet&name=OpenDeepWiki"
}
}
}
- owner: Repository organization or owner name
- name: Repository name
After adding the repository, you can test by asking questions like "What is OpenDeepWiki?", with effects as shown below:
This way, OpenDeepWiki can serve as an MCPServer for other AI models to call, facilitating analysis and understanding of open-source projects.
- Clone the repository
git clone https://github.com/AIDotNet/OpenDeepWiki.git
cd OpenDeepWiki
- Modify environment variable configuration in
docker-compose.yml
:
- OpenAI example:
services:
koalawiki:
environment:
- KOALAWIKI_REPOSITORIES=/repositories
- TASK_MAX_SIZE_PER_USER=5 # Maximum parallel document generation tasks per user for AI
- CHAT_MODEL=DeepSeek-V3 # Model must support function calling
- ANALYSIS_MODEL= # Analysis model for generating repository directory structure
- CHAT_API_KEY= # Your API Key
- LANGUAGE= # Default generation language, e.g., "Chinese"
- ENDPOINT=https://api.token-ai.cn/v1
- DB_TYPE=sqlite
- MODEL_PROVIDER=OpenAI # Model provider, supports OpenAI, AzureOpenAI, Anthropic
- DB_CONNECTION_STRING=Data Source=/data/KoalaWiki.db
- EnableSmartFilter=true # Whether to enable smart filtering, affects AI's ability to get repository file directories
- UPDATE_INTERVAL # Repository incremental update interval in days
- MAX_FILE_LIMIT=100 # Maximum upload file limit in MB
- DEEP_RESEARCH_MODEL= # Deep research model, if empty uses CHAT_MODEL
- ENABLE_INCREMENTAL_UPDATE=true # Whether to enable incremental updates
- ENABLE_CODED_DEPENDENCY_ANALYSIS=false # Whether to enable code dependency analysis, may affect code quality
- ENABLE_WAREHOUSE_COMMIT=true # Whether to enable warehouse commit
- ENABLE_FILE_COMMIT=true # Whether to enable file commit
- REFINE_AND_ENHANCE_QUALITY=true # Whether to refine and enhance quality
- ENABLE_WAREHOUSE_FUNCTION_PROMPT_TASK=true # Whether to enable warehouse function prompt task
- ENABLE_WAREHOUSE_DESCRIPTION_TASK=true # Whether to enable warehouse description task
- CATALOGUE_FORMAT=compact # Directory structure format (compact, json, pathlist, unix)
- ENABLE_CODE_COMPRESSION=false # Whether to enable code compression
- AzureOpenAI and Anthropic configurations are similar, only need to adjust
ENDPOINT
andMODEL_PROVIDER
.
- DB_TYPE=sqlite
- DB_CONNECTION_STRING=Data Source=/data/KoalaWiki.db
- DB_TYPE=postgres
- DB_CONNECTION_STRING=Host=localhost;Database=KoalaWiki;Username=postgres;Password=password
- DB_TYPE=sqlserver
- DB_CONNECTION_STRING=Server=localhost;Database=KoalaWiki;Trusted_Connection=true;
- DB_TYPE=mysql
- DB_CONNECTION_STRING=Server=localhost;Database=KoalaWiki;Uid=root;Pwd=password;
- Start services
Using Makefile commands:
# Build all Docker images
make build
# Start all services in background
make up
# Start in development mode (with visible logs)
make dev
Visit http://localhost:8090 to access the knowledge base page.
For Windows users without make environment, use Docker Compose directly:
docker-compose build
docker-compose up -d
docker-compose up
docker-compose down
docker-compose logs -f
- Build for specific architecture:
docker-compose build --build-arg ARCH=arm64
docker-compose build --build-arg ARCH=amd64
- Build only backend or frontend:
docker-compose build koalawiki
docker-compose build koalawiki-web
- One-click deployment to Sealos (supports public network access):
For detailed steps, please refer to: One-click Sealos Deployment of OpenDeepWiki
OpenDeepWiki leverages AI to achieve:
- Clone code repository locally
- Read .gitignore configuration to ignore irrelevant files
- Recursively scan directories to get all files and directories
- Determine if file count exceeds threshold; if so, call AI model for intelligent directory filtering
- Parse AI-returned directory JSON data
- Generate or update README.md
- Call AI model to generate repository classification information and project overview
- Clean project analysis tag content and save project overview to database
- Call AI to generate thinking directory (task list)
- Recursively process directory tasks to generate document directory structure
- Save directory structure to database
- Process incomplete document tasks
- If Git repository, clean old commit records, call AI to generate update log and save
graph TD
A[Clone code repository] --> B[Read .gitignore configuration to ignore files]
B --> C[Recursively scan directories to get all files and directories]
C --> D{Does file count exceed threshold?}
D -- No --> E[Directly return directory structure]
D -- Yes --> F[Call AI model for intelligent directory structure filtering]
F --> G[Parse AI-returned directory JSON data]
E --> G
G --> H[Generate or update README.md]
H --> I[Call AI model to generate repository classification information]
I --> J[Call AI model to generate project overview information]
J --> K[Clean project analysis tag content]
K --> L[Save project overview to database]
L --> M[Call AI to generate thinking directory task list]
M --> N[Recursively process directory tasks to generate DocumentCatalog]
N --> O[Save directory structure to database]
O --> P[Process incomplete document tasks]
P --> Q{Is repository type Git?}
Q -- Yes --> R[Clean old commit records]
R --> S[Call AI to generate update log]
S --> T[Save update log to database]
Q -- No --> T
KOALAWIKI_REPOSITORIES
: Repository storage pathTASK_MAX_SIZE_PER_USER
: Maximum parallel document generation tasks per user for AICHAT_MODEL
: Chat model (must support function calling)ENDPOINT
: API endpointANALYSIS_MODEL
: Analysis model for generating repository directory structureCHAT_API_KEY
: API keyLANGUAGE
: Document generation languageDB_TYPE
: Database type, supports sqlite, postgres, sqlserver, mysql (default: sqlite)MODEL_PROVIDER
: Model provider, default OpenAI, supports AzureOpenAI, AnthropicDB_CONNECTION_STRING
: Database connection stringEnableSmartFilter
: Whether to enable smart filtering, affects AI's ability to get repository directoriesUPDATE_INTERVAL
: Repository incremental update interval (days)MAX_FILE_LIMIT
: Maximum upload file limit (MB)DEEP_RESEARCH_MODEL
: Deep research model, if empty uses CHAT_MODELENABLE_INCREMENTAL_UPDATE
: Whether to enable incremental updatesENABLE_CODED_DEPENDENCY_ANALYSIS
: Whether to enable code dependency analysis, may affect code qualityENABLE_WAREHOUSE_COMMIT
: Whether to enable warehouse commitENABLE_FILE_COMMIT
: Whether to enable file commitREFINE_AND_ENHANCE_QUALITY
: Whether to refine and enhance qualityENABLE_WAREHOUSE_FUNCTION_PROMPT_TASK
: Whether to enable warehouse function prompt taskENABLE_WAREHOUSE_DESCRIPTION_TASK
: Whether to enable warehouse description taskCATALOGUE_FORMAT
: Directory structure format (compact, json, pathlist, unix)ENABLE_CODE_COMPRESSION
: Whether to enable code compression
Makefile commands:
make build-arm # ARM architecture
make build-amd # AMD architecture
make build-backend-arm # Backend only ARM
make build-frontend-amd # Frontend only AMD
- Discord: join us
- WeChat Official Account QR Code:
This project is licensed under the MIT License. See LICENSE for details.