This package introduces the type StructArray
which is an AbstractArray
whose elements are struct
(for example NamedTuples
, or ComplexF64
, or a custom user defined struct
). While a StructArray
iterates structs
, the layout is column based (meaning each field of the struct
is stored in a separate Array
).
Base.getproperty
or the dot syntax can be used to access columns, whereas rows can be accessed with getindex
.
The package was largely inspired by the Columns
type in IndexedTables which it now replaces.
julia> using StructArrays, Random
julia> Random.seed!(4);
julia> s = StructArray{ComplexF64}((rand(2,2), rand(2,2)))
2×2 StructArray(::Array{Float64,2}, ::Array{Float64,2}) with eltype Complex{Float64}:
0.680079+0.625239im 0.92407+0.267358im
0.874437+0.737254im 0.929336+0.804478im
julia> s[1, 1]
0.680079235935741 + 0.6252391193298537im
julia> s.re
2×2 Array{Float64,2}:
0.680079 0.92407
0.874437 0.929336
julia> fieldarrays(s) # obtain all field arrays as a named tuple
(re = [0.680079 0.92407; 0.874437 0.929336], im = [0.625239 0.267358; 0.737254 0.804478])
Note that the same approach can be used directly from an Array
of complex numbers:
julia> StructArray([1+im, 3-2im])
2-element StructArray(::Array{Int64,1}, ::Array{Int64,1}) with eltype Complex{Int64}:
1 + 1im
3 - 2im
One can also create a StructArrray
from an iterable of structs without creating an intermediate Array
:
julia> StructArray(log(j+2.0*im) for j in 1:10)
10-element StructArray(::Array{Float64,1}, ::Array{Float64,1}) with eltype Complex{Float64}:
0.8047189562170501 + 1.1071487177940904im
1.0397207708399179 + 0.7853981633974483im
1.2824746787307684 + 0.5880026035475675im
1.4978661367769954 + 0.4636476090008061im
1.683647914993237 + 0.3805063771123649im
1.8444397270569681 + 0.3217505543966422im
1.985145956776061 + 0.27829965900511133im
2.1097538525880535 + 0.24497866312686414im
2.2213256282451583 + 0.21866894587394195im
2.3221954495706862 + 0.19739555984988078im
Another option is to create an uninitialized StructArray
and then fill it with data. Just like in normal arrays, this is done with the undef
syntax:
julia> s = StructArray{ComplexF64}(undef, 2, 2)
2×2 StructArray(::Array{Float64,2}, ::Array{Float64,2}) with eltype Complex{Float64}:
6.91646e-310+6.91646e-310im 6.91646e-310+6.91646e-310im
6.91646e-310+6.91646e-310im 6.91646e-310+6.91646e-310im
julia> rand!(s)
2×2 StructArray(::Array{Float64,2}, ::Array{Float64,2}) with eltype Complex{Float64}:
0.680079+0.874437im 0.625239+0.737254im
0.92407+0.929336im 0.267358+0.804478im
StructArrays supports using custom array types. It is always possible to pass field arrays of a custom type. The "custom array of structs to struct of custom arrays" transformation will use the similar
method of the custom array type. This can be useful when working on the GPU for example:
julia> using StructArrays, CuArrays
julia> a = CuArray(rand(Float32, 10));
julia> b = CuArray(rand(Float32, 10));
julia> StructArray{ComplexF32}((a, b))
10-element StructArray(::CuArray{Float32,1}, ::CuArray{Float32,1}) with eltype Complex{Float32}:
0.19555175f0 + 0.9604322f0im
0.68348145f0 + 0.5778245f0im
0.69664395f0 + 0.79825306f0im
0.118531585f0 + 0.3031248f0im
0.80057466f0 + 0.8964418f0im
0.63772964f0 + 0.2923274f0im
0.65374136f0 + 0.7932533f0im
0.6043732f0 + 0.65964353f0im
0.1106627f0 + 0.090207934f0im
0.707458f0 + 0.1700114f0im
julia> c = CuArray(rand(ComplexF32, 10));
julia> StructArray(c)
10-element StructArray(::Array{Float32,1}, ::Array{Float32,1}) with eltype Complex{Float32}:
0.7176411f0 + 0.864058f0im
0.252609f0 + 0.14824867f0im
0.26842773f0 + 0.9084332f0im
0.33128333f0 + 0.5106474f0im
0.6509278f0 + 0.87059164f0im
0.9522146f0 + 0.053706646f0im
0.899577f0 + 0.63242567f0im
0.325814f0 + 0.59225655f0im
0.56267905f0 + 0.21927536f0im
0.49719965f0 + 0.754143f0im
If you already have your data in a StructArray
with field arrays of a given format (say plain Array
) you can change them with replace_storage
:
julia> s = StructArray([1.0+im, 2.0-im])
2-element StructArray(::Array{Float64,1}, ::Array{Float64,1}) with eltype Complex{Float64}:
1.0 + 1.0im
2.0 - 1.0im
julia> replace_storage(CuArray, s)
2-element StructArray(::CuArray{Float64,1}, ::CuArray{Float64,1}) with eltype Complex{Float64}:
1.0 + 1.0im
2.0 - 1.0im
julia> t = StructArray((a = [1, 2], b = ["x", "y"]))
2-element StructArray(::Array{Int64,1}, ::Array{String,1}) with eltype NamedTuple{(:a, :b),Tuple{Int64,String}}:
(a = 1, b = "x")
(a = 2, b = "y")
julia> t[1]
(a = 1, b = "x")
julia> t.a
2-element Array{Int64,1}:
1
2
julia> push!(t, (a = 3, b = "z"))
3-element StructArray(::Array{Int64,1}, ::Array{String,1}) with eltype NamedTuple{(:a, :b),Tuple{Int64,String}}:
(a = 1, b = "x")
(a = 2, b = "y")
(a = 3, b = "z")
StructArrays also provides a LazyRow
wrapper for lazy row iteration. LazyRow(t, i)
does not materialize the i-th row but returns a lazy wrapper around it on which getproperty
does the correct thing. This is useful when the row has many fields only some of which are necessary. It also allows changing columns in place.
julia> t = StructArray((a = [1, 2], b = ["x", "y"]));
julia> LazyRow(t, 2).a
2
julia> LazyRow(t, 2).a = 123
123
julia> t
2-element StructArray(::Array{Int64,1}, ::Array{String,1}) with eltype NamedTuple{(:a, :b),Tuple{Int64,String}}:
(a = 1, b = "x")
(a = 123, b = "y")
To iterate in a lazy way one can simply iterate LazyRows
:
julia> map(t -> t.b ^ t.a, LazyRows(t))
2-element Array{String,1}:
"x"
"yy"
StructArrays support structures with non-standard data layout (where getproperty
has been overloaded or where the constructors are non-standard). The user is required to provide an overloaded staticschema
for their type (to give the names and types of the properties of a given type) as well as a createinstance
method. Here is an example of a type MyType
that has as properties either its field data
or properties of its field rest
(which is a named tuple):
using StructArrays
struct MyType{NT<:NamedTuple}
data::Float64
rest::NT
end
MyType(x; kwargs...) = MyType(x, values(kwargs))
Base.getproperty(b::MyType, s::Symbol) = s == :data ? getfield(b, 1) : getproperty(getfield(b, 2), s)
getnamestypes(::Type{NamedTuple{names, types}}) where {names, types} = (names, types)
getnamestypes(::Type{MyType{NT}}) where NT = getnamestypes(NT)
function StructArrays.staticschema(::Type{T}) where {T<:MyType}
names, types = getnamestypes(T)
NamedTuple{(:data, names...), Base.tuple_type_cons(Float64, types)}
end
function StructArrays.createinstance(::Type{T}, x, args...) where {T<:MyType}
names, types = getnamestypes(T)
MyType(x, NamedTuple{names, types}(args))
end
s = [MyType(rand(), a=1, b=2) for i in 1:10]
StructArray(s)
StructArrays provides a function StructArrays.append!!(dest, src)
(unexported) for "mutate-or-widen" style accumulation. This function can be used via BangBang.append!!
and BangBang.push!!
as well.
StructArrays.append!!
works like append!(dest, src)
if dest
can contain all element types in src
iterator; i.e., it mutates dest
in-place:
julia> dest = StructVector((a=[1], b=[2]))
1-element StructArray(::Array{Int64,1}, ::Array{Int64,1}) with eltype NamedTuple{(:a, :b),Tuple{Int64,Int64}}:
(a = 1, b = 2)
julia> StructArrays.append!!(dest, [(a = 3, b = 4)])
2-element StructArray(::Array{Int64,1}, ::Array{Int64,1}) with eltype NamedTuple{(:a, :b),Tuple{Int64,Int64}}:
(a = 1, b = 2)
(a = 3, b = 4)
julia> ans === dest
true
Unlike append!
, append!!
can also widen element type of dest
array:
julia> StructArrays.append!!(dest, [(a = missing, b = 6)])
3-element StructArray(::Array{Union{Missing, Int64},1}, ::Array{Int64,1}) with eltype NamedTuple{(:a, :b),Tuple{Union{Missing, Int64},Int64}}:
NamedTuple{(:a, :b),Tuple{Union{Missing, Int64},Int64}}((1, 2))
NamedTuple{(:a, :b),Tuple{Union{Missing, Int64},Int64}}((3, 4))
NamedTuple{(:a, :b),Tuple{Union{Missing, Int64},Int64}}((missing, 6))
julia> ans === dest
false
Since the original array dest
cannot hold the input, a new array is created (ans !== dest
).
Combined with function barriers, append!!
is a useful building block for implementing collect
-like functions.