You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Use, finetune, pretrain, and deploy LLMs Lightning fast ⚡⚡
44
44
Every LLM is implemented from scratch with **no abstractions** and **full control**, making them blazing fast, minimal, and performant at enterprise scale.
45
45
46
-
✅ **Enterprise ready -** Apache 2.0 for unlimited enterprise use.
47
-
✅ **Developer friendly -** Easy debugging with no abstraction layers and single file implementations.
48
-
✅ **Optimized performance -** Models designed to maximize performance, reduce costs, and speed up training.
Deploy a pretrained or finetune LLM to use it in real-world applications. Deploy, automatically sets up a web server that can be accessed by a website or app.
245
+
Deploy a pretrained or finetune LLM to use it in real-world applications. Deploy, automatically sets up a web server that can be accessed by a website or app.
Test how well the model works via an interactive chat. Use the `chat` command to chat, extract embeddings, etc...
302
302
303
303
Here's an example showing how to use the Phi-2 LLM:
@@ -322,7 +322,7 @@ litgpt chat microsoft/phi-2
322
322
>> Prompt: What do Llamas eat?
323
323
```
324
324
325
-
The download of certain models requires an additional access token. You can read more about this in the [download](tutorials/download_model_weights.md#specific-models-and-access-tokens) documentation.
325
+
The download of certain models requires an additional access token. You can read more about this in the [download](tutorials/download_model_weights.md#specific-models-and-access-tokens) documentation.
✅ State-of-the-art optimizations: Flash Attention v2, multi-GPU support via fully-sharded data parallelism, [optional CPU offloading](tutorials/oom.md#do-sharding-across-multiple-gpus), and [TPU and XLA support](extensions/xla).
426
-
427
-
✅ [Pretrain](tutorials/pretrain.md), [finetune](tutorials/finetune.md), and [deploy](tutorials/inference.md)
428
-
429
-
✅ Reduce compute requirements with low-precision settings: FP16, BF16, and FP16/FP32 mixed.
430
-
431
-
✅ Lower memory requirements with [quantization](tutorials/quantize.md): 4-bit floats, 8-bit integers, and double quantization.
432
-
433
-
✅ [Configuration files](config_hub) for great out-of-the-box performance.
434
-
435
-
✅ Parameter-efficient finetuning: [LoRA](tutorials/finetune_lora.md), [QLoRA](tutorials/finetune_lora.md), [Adapter](tutorials/finetune_adapter.md), and [Adapter v2](tutorials/finetune_adapter.md).
436
-
437
-
✅ [Exporting](tutorials/convert_lit_models.md) to other popular model weight formats.
438
-
439
-
✅ Many popular datasets for [pretraining](tutorials/pretrain.md) and [finetuning](tutorials/prepare_dataset.md), and [support for custom datasets](tutorials/prepare_dataset.md#preparing-custom-datasets-for-instruction-finetuning).
440
-
441
-
✅ Readable and easy-to-modify code to experiment with the latest research ideas.
425
+
✅ State-of-the-art optimizations: Flash Attention v2, multi-GPU support via fully-sharded data parallelism, [optional CPU offloading](tutorials/oom.md#do-sharding-across-multiple-gpus), and [TPU and XLA support](extensions/xla).</br>
426
+
✅ [Pretrain](tutorials/pretrain.md), [finetune](tutorials/finetune.md), and [deploy](tutorials/inference.md)</br>
427
+
✅ Reduce compute requirements with low-precision settings: FP16, BF16, and FP16/FP32 mixed.</br>
428
+
✅ Lower memory requirements with [quantization](tutorials/quantize.md): 4-bit floats, 8-bit integers, and double quantization.</br>
429
+
✅ [Configuration files](config_hub) for great out-of-the-box performance.</br>
430
+
✅ Parameter-efficient finetuning: [LoRA](tutorials/finetune_lora.md), [QLoRA](tutorials/finetune_lora.md), [Adapter](tutorials/finetune_adapter.md), and [Adapter v2](tutorials/finetune_adapter.md).</br>
431
+
✅ [Exporting](tutorials/convert_lit_models.md) to other popular model weight formats.</br>
432
+
✅ Many popular datasets for [pretraining](tutorials/pretrain.md) and [finetuning](tutorials/prepare_dataset.md), and [support for custom datasets](tutorials/prepare_dataset.md#preparing-custom-datasets-for-instruction-finetuning).</br>
433
+
✅ Readable and easy-to-modify code to experiment with the latest research ideas.</br>
442
434
443
435
444
436
@@ -458,7 +450,7 @@ litgpt finetune \
458
450
```
459
451
<details>
460
452
<summary>✅ Use configs to customize training</summary>
461
-
453
+
462
454
Configs let you customize training for all granular parameters like:
463
455
464
456
```yaml
@@ -625,7 +617,7 @@ litgpt finetune \
625
617
626
618
# Project highlights
627
619
628
-
LitGPT powers many great AI projects, initiatives, challenges and of course enterprises. Please submit a pull request to be considered for a feature.
620
+
LitGPT powers many great AI projects, initiatives, challenges and of course enterprises. Please submit a pull request to be considered for a feature.
629
621
630
622
<details>
631
623
<summary>📊 SAMBA: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling</summary>
@@ -670,22 +662,22 @@ The research paper ["Pre-training Small Base LMs with Fewer Tokens"](https://arx
670
662
671
663
We welcome all individual contributors, regardless of their level of experience or hardware. Your contributions are valuable, and we are excited to see what you can accomplish in this collaborative and supportive environment.
672
664
673
-
-[Request a feature](https://github.com/Lightning-AI/litgpt/issues)
674
-
-[Submit your first contribution](https://lightning.ai/pages/community/tutorial/how-to-contribute-to-litgpt/)
0 commit comments