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ASAM OSI Flatbuffers 
Performance Report 

 

Abstract 

In the current phase of the ASAM Open Simulation Interface (OSI) development, the OSI Change Control 

Board (CCB) is discussing a new release 4.0 that may disrupt backward compatibility. Such a step in a 

standard needs well-founded arguments, but on the other hand it also enables new possibilities.  In order 

to evaluate the application and performance of Google Flatbuffers instead of the currently used Protobuf 

for serialization and deserialization of data, the OSI CCB has commissioned Persival GmbH. 

This second report contains a detailed performance analysis of Flatbuffers. Application experiences for 

OSI during the implementation of working examples are given in the first report. The overall project goal 

is to support the decision of ASAM OSI to change the standard's serialization method in future releases. 

The project period has been from Jan 18 - Mar 31, 2022. 

At first, the general performance measurement concept is introduced. This includes an explanation at 

what steps time stamps are captured during co-simulation and additionally the definition of the 

performance logfile format. 

The second chapter includes the evaluation of all performance measurements and a detailed comparison.  

All tests are performed using OSI v3.4.0 which already includes Flatbuffers for experimental build. 

Performance is evaluated for transfer of different numbers of reflections and objects. The number of rays 

thereby reflects typical amounts of reflections for super-sampling all beams of lidars like the Velodyne 

VLP32TM. An additional evaluation between debug and release builds and of the Flatbuffers Object API is 

performed. Furthermore, as it matters a lot for performance of Flatbuffers, the difference between using 

tables or structs for the data is evaluated. Last, it is evaluated what it takes to replay previously captured 

OSI trace files in binary format and all results are summarized in a table at the end. 

Finally, a short conclusion on Flatbuffers performance is provided accompanied by recommendations for 

the future of the Open Simulation Interface.  
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1 Performance Logging 

1.1 General Concept 

To assess the performance of Flatbuffers vs. Protobuf, the general concept is to connect an extended 

OSMPDummySource FMU to an OSMPDummySensor with performance logging implemented in both 

FMUs. The OSMPDummySource was extended to generate different quantities of equal dummy 

osi3::LidarSensorView::Reflections in addition to the moving objects it already creates. The 

OSMPDummySensor was extended with a section that creates osi3::LidarDetections out of a number of 

reflections to consider data access in the sensor model. Furthermore, different concepts of using 

Flatbuffers are investigated, like using the Object API or changing certain Tables to Structs. 

The data from the performance log files is processed by a Python script to generate box plots. The script 

along with a more detailed README on how to use it is available open source1. 

1.2 Time Measurements 

In the OSMPDummySource time stamps are recorded at three locations in the code. The first one is at the 

beginning of the doCalc() function. In the Protobuf version, the second time stamp is taken right before 

the set_fmi_sensor_view_out() function is called. That is where the serialization in Protobuf is done. In 

the Flatbuffers version, the second time stamp is taken before the builder is finished, as there is no single 

point in the code, where the serialization happens. The third time stamp is recorded in both 

implementations, after the set_fmi_sensor_view_out() function is called. The differences between these 

three time stamps result in two time measurements: 

• Source generation: The time it takes from the beginning of doCalc() until the data is serialized in 

Protobuf. In Flatbuffers the serialization happens during the object generation, so it is not 

separable. This needs to be kept in mind when comparing the two. 

• Source serialization: The time it takes to serialize the data in Protobuf and the time it takes in 

Flatbuffers to finish the builder and set the FMU output. 

In the OSMPDummySensor time stamps are recorded at four locations. The first one is again at the 

beginning of the doCalc() function. The second time stamp is taken after the get_fmi_sensor_view_in() 

function is called. This is where the input is deserialized in Protobuf. The third time stamp is recorded 

before the set_fmi_sensor_data_out() function is called in Protobuf and before the builder is finished in 

Flatbuffers. The last time stamp is taken at the end of the doCalc() function after 

set_fmi_sensor_data_out() is called. The differences between these four time stamps result in three time 

measurements: 

• Model deserialization: The time it takes for Protobuf to deserialize the input and for Flatbuffers 

to get the pointer to the input. 

• Model calculation: The time it takes for the model to calculate its detection and object output. 

• Model serialization: The time it takes to serialize the data in Protobuf and the time it takes in 

Flatbuffers to finish the builder and set the FMU output. 

 
1 https://gitlab.com/persival-open-source/open-simulation-interface/osi-performance-evaluation  

https://gitlab.com/persival-open-source/open-simulation-interface/osi-performance-evaluation
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1.3 Logfile Format 

The time stamps are written along with further meta data, like the message sizes and which FMU is used 

to a JSON file for every FMU. The JSON format was adapted from a logging format developed in the SET 

Level project. An example of the format is given the performance log file excerpt in Code Snippet 1.  

{ 

  "Header": { 

    "OsiMessages": ["osi3::SensorView", "osi3::SensorData"], 

    "EventFields": ["EventId", "GlobalTime", "SimulationTime", "MessageId", 

          "SizeValueReference", "MessageSize"], 

    "EventTypes": ["StartSourceCalc", "StartOSISerialize",  

          "StopOSISerialize", "StartOSIDeserialize", "StopOSIDeserialize"], 

    "FormatVersion": { 

      "Major": 1, 

      "Minor": 0, 

      "Patch": 0, 

      "PreRelease": "beta" 

    } 

  }, 

  "Data": [ 

    { 

      "Instance": { 

        "ModelIdentity": "OSMPDummySource Flatbuf" 

      }, 

      "OsiEvents": [ 

        [0, 1648482698.771, 0.1, 0, 5, 23226752], 

        [1, 1648482698.817, 0.1, 0, 5, 23226752], 

        [2, 1648482698.83, 0.1, 0, 5, 23226752], 

        [0, 1648482698.841, 0.2, 0, 5, 23226752], 

        [1, 1648482698.882, 0.2, 0, 5, 23226752], 

        [2, 1648482698.891, 0.2, 0, 5, 23226752], 

        ... 

      ] 

    } 

  ] 

} 

Code Snippet 1: Except from an OSI performance log file. The JSON format was developed in the SET Level project. 
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2 Performance Comparison 

2.1 Different Reflection and Object Counts 

In this first section of the performance evaluation several different configurations of lidar reflections and 

moving objects are assessed. The first case is the simulation of a typical reflection count for a Velodyne 

VLP32TM lidar. In the current ASAM OSI release, rays are defined in an equidistant pattern. This is not 

feasible for lidars with gaps between the layers, as those gaps would also be covered with rays leading to 

a not processible number of reflections. It is presumed that this will be addressed in a future OSI release, 

as proposed by the SET Level project. 

Therefore, an improved reflection version is assumed for the definition of the number of reflections, 

where rays are only shot inside the boundaries of the lidar beams. The VLP32 TM has 32 layers vertically 

and 1800 beams per layer over a 360° revolution. Super-sampling of the beams with 3 rays vertically and 

6 rays horizontally per beam is defined, resulting in 18 rays per beam. With an assumption, that about 

80 % of the rays produce a result, a total of 829,440 lidar reflections is generated. In addition to the 

reflections, the default amount of 10 moving objects from the OSMPDummySource is also created. In the 

OSMPDummySensor a section was added to generate a lidar detection out of every 18th reflection. The 

following sections on Debug, Object API and Structs also use this configuration and are therefore 

comparable. 

Figure 1 shows the results of the performance measurement. The time it takes to generate and serialize 

the source data increases in Flatbuffers by around 60 %. But because there is virtually no deserialization 

in the model, the time in the model is drastically decreased by about 86 %. The total performance 

improvement of Flatbuffers over Protobuf in this configuration is 44 % from 93 to 52 ms. 

The size of the SensorView generated and serialized by the source is about 16 MB with Protobuf and 

23 MB with Flatbuffers. So, there is an increase by 44 % in size from Protobuf to Flatbuffers. 

  
Figure 1: 829,440 lidar reflections and 10 moving objects 
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In the next evaluation, the reflection count was reduced by about half to 400,000 reflections. The results 

are shown in Figure 2. The performance scales roughly linearly with the number of reflections totaling in 

24 ms in Flatbuffers and 45 ms in Protobuf. The size increases from 8 MB to 11 MB from Protobuf to 

Flatbuffers. 

  
Figure 2: 400,000 lidar reflections and 10 moving objects 

 

Further reducing the reflection count to 100,000 reflections confirms the linear scaling, as can be seen in 

Figure 3.  

  
Figure 3: 100,000 lidar reflections and 10 moving objects 

 

Removing the reflections altogether and just creating the remaining 10 moving objects yields a run time, 

that is not quantifiable in ms. For the sake of completeness, the plot is included anyways in Figure 4. The 

SensorView size for Protobuf and Flatbuffes is 2.2 kB and 2.4 kB respectively. 
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Figure 4: 10 moving objects 

Increasing the number of moving objects, also increases the run time, but no difference between 

Flatbuffers and Protobuf is visible, as depicted in Figure 5 and Figure 6. The SensorView sizes are 41 kB for 

both Protobuf and Flatbuffers in the 200 object configuration and about 103 kB for 500 objects. 

  
Figure 5: 200 moving objects 

  
Figure 6: 500 moving objects 
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2.2 Release vs. Debug 

The build configuration plays a major role. There is a big performance difference when building in Debug 

vs. in Release. All other performance evaluations in this report are done in the Release configuration. 

Figure 7 shows the result of Debug FMUs with the first configuration of 829,440 reflections. Please 

consider the changed scaling on the ordinate ranging from 0.0 to 0.5 s now. Run time is increased by 

around 880 % with Flatbuffers and 420 % in Protobuf. So, with Debug, Flatbuffers is actually 17 % slower 

than Protobuf. The sizes of the SensorViews are not affected and stay at 16 MB and 23 MB respectively. 

  
Figure 7: Flatbuffers and Protobuf built in Debug 

2.3 Object API 

As described in the application report, Flatbuffers also comes with an Object API, making the programming 

a more intuitive. This comes at the price of performance. Using the Object API over plain Flatbuffers 

increases the run time by around 48 %. The size of the SensorView does not change and remains at 23 MB. 

 

Figure 8: Flatbuffers Object API 
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2.4 Tables vs. Structs 

Although using structs instead of tables for the reflections is not advisable, because of backward 

compatibility issues, the performance is still analyzed. For this evaluation, the reflection table as well as 

the more primitive fields like Vector3D, Dimension3D, Identifier etc. are changed to structs. The results in 

Figure 9 show an improvement both in the source and in the model. The source generation time decreases 

from 40 ms to around 20 ms and the model calculation from 9 ms to around 5 ms. The overall run time is 

reduced by 63 %. The size also slightly decreases from 23 MB to 20 MB. However, this remains a purely 

academic result, as backward compatibility is not possible with structs instead of tables. 

 

Figure 9: Lidar reflections and Vector3D, Dimension3D etc. as structs 

 

2.5 Trace Files 

Originally not intended for the performance evaluation is the run time evaluation for playing back trace 

files. Nevertheless, as the trace files including their players were developed during this project for the 

application assessment, they were also analyzed in terms of performance. The number of reflections 

however is not comparable to the previous examples, because an IbeoLUX TM 2010 was simulated with 

the original ASAM OSI 3.4 reflection configuration instead of a Velodyne VLP32 TM with its assumed SET 

Level improvements. Exactly 668,052 reflections are transmitted for every simulation time step along with 

10 moving objects. 

Figure 10 shows the results with a drastic performance improvement with Flatbuffers of 86 %. Flatbuffers 

increases the playback speed by around 7 times. The Protobuf trace file has a size of 968 MB containing 

6 s of simulation time. The Flatbuffers trace file is slightly larger with 1.05 GB. 
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Figure 10: Trace file player with 668,052 lidar reflections 

 

2.6 Summary 

The following Table 1 summarizes the performance benchmarks of the evaluated tests. When large 

numbers of reflections are involved, Flatbuffers reduces the run time by around half compared to 

Protobuf. For configurations without reflections no performance gain was observed. Building the FMUs in 

Debug heavily increases run time as well as the Object API. Playing OSI trace files is around 7 times faster 

with Flatbuffers than with Protobuf. 

 

Table 1: Summary of all performance evaluations 

Evaluation Subject Flatbuffers Protobuf 

Source in ms Model in ms Source in ms Model in ms 

829,440 reflections, 10 objects 43 9 27 66 
400,000 reflections, 10 objects 20 4 13 32 
100,000 reflections, 10 objects 5 1 3 8 
10 objects 0 0 0 0 
200 objects 1 1 1 1 
500 objects 2 2 2 2 
Debug build 352 117 132 258 
Flatbuffers Object API 68 9 - - 
Reflections, Vector3D etc. as Structs 28 5 - - 
Trace File Player (700,000 refl.) 1 7 7 49 
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3 Conclusion 

At first, the general performance measurement concept has been introduced including an explanation of 

the selection of points for time capturing during co-simulation. Therefore, five intervals are taken into 

account: The time for generating the source data, the time it takes to serialize the source data, the 

duration of the deserialization within the sensor model, the calculation time of the model and finally the 

data serialization time of the model.  

The results within the second chapter show that computation time scales with the number of reflections 

and objects. As Flatbuffers does not need a deserialization step, data access is 7-8 times faster compared 

to Protobuf. Nevertheless, serialization of many reflections even takes around 60 % longer with 

Flatbuffers. Overall, the co-simulation of Reflection/ObjectSource and SensorModel with Flatbuffers takes 

half the time of the Protobuf implementation. This is a performance enhancement, but probably not as 

much as it was expected to be. 

The Flatbuffers Object API while providing ease of use also comes with a lower performance by around 

50 %. Structs can be used to increase performance, but are not backward compatible. The evaluation of 

the binary OSI trace files indicates that replay of binaries is 7 times faster with Flatbuffers, while again 

deserialization of Protobuf takes some time. 

While there is definitely more application experience needed by other users of the OSI standard, the here 

evaluated lidar/radar reflections can be expected to be the worst-case regarding packet size per frame to 

transfer. The results show that object lists of moving objects are already quite fast with Protobuf and do 

not benefit from switching to Flatbuffers. However, the results for reflection transfer show that while 

serialization of the data cannot be accelerated with Flatbuffers, it does not need a deserialization step 

and therefore data access within the model after transfer is much faster. 

After all application and performance evaluation of Flatbuffers against Protobuf, we as the service 

provider for this first trial would not recommend to switch to Flatbuffers. Possibly other data encoding for 

lidar/radar reflections/detections that e.g. uses some regular binary scheme in the first place, as it is 

already the case for camera data, seems to be more promising regarding data amount and 

serialization/deserialization time for now. Such data encoding would bring the possibility of applying data 

reduction and does not need a deserialization step, as is the case with Flatbuffers. If lidar/radar binary 

encoding would be added to OSI as just another field, this would keep backward compatibility and would 

not bring the overhead of the Flatbuffers application that is “definitely not the simple implementation 

solution to all performance problems that it was promised to be”, as already summarized at the end of 

the application report.  


