Skip to content

Commit 5165d09

Browse files
Refactor unnecessary else / elif when if block has a return statement (#2717)
* Refactor unnecessary `else` / `elif` when `if` block has a `return` statement * Unnecessary `else`/`elif` used after `raise` PYL-R1720 Signed-off-by: Wenqi Li <[email protected]> Co-authored-by: deepsource-autofix[bot] <62050782+deepsource-autofix[bot]@users.noreply.github.com> Co-authored-by: Wenqi Li <[email protected]>
1 parent 48c2681 commit 5165d09

File tree

10 files changed

+34
-41
lines changed

10 files changed

+34
-41
lines changed

monai/data/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -403,7 +403,7 @@ def _detect_batch_size(batch_data: Sequence):
403403
dict_batch[k] = v
404404

405405
return dict_batch
406-
elif isinstance(batch_data, list):
406+
if isinstance(batch_data, list):
407407
batch_size = _detect_batch_size(batch_data)
408408
list_batch = []
409409
for b in batch_data:

monai/handlers/utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -259,7 +259,7 @@ def from_engine(keys: KeysCollection, first: bool = False):
259259
def _wrapper(data):
260260
if isinstance(data, dict):
261261
return tuple(data[k] for k in keys)
262-
elif isinstance(data, list) and isinstance(data[0], dict):
262+
if isinstance(data, list) and isinstance(data[0], dict):
263263
# if data is a list of dictionaries, extract expected keys and construct lists,
264264
# if `first=True`, only extract keys from the first item of the list
265265
ret = [data[0][k] if first else [i[k] for i in data] for k in keys]

monai/networks/blocks/fcn.py

Lines changed: 17 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -191,25 +191,24 @@ def forward(self, x: torch.Tensor):
191191
fs3 = self.refine8(self.up_conv(fs2) + gcfm4)
192192
fs4 = self.refine9(self.up_conv(fs3) + gcfm5)
193193
return self.refine10(self.up_conv(fs4))
194-
else:
195-
fs1 = self.refine6(
196-
F.interpolate(gcfm1, fm3.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm2
197-
)
198-
fs2 = self.refine7(F.interpolate(fs1, fm2.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm3)
199-
fs3 = self.refine8(
200-
F.interpolate(fs2, pool_x.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm4
201-
)
202-
fs4 = self.refine9(
203-
F.interpolate(fs3, conv_x.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm5
204-
)
205-
return self.refine10(
206-
F.interpolate(
207-
fs4,
208-
org_input.size()[2:],
209-
mode=self.upsample_mode,
210-
align_corners=True,
211-
)
194+
fs1 = self.refine6(
195+
F.interpolate(gcfm1, fm3.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm2
196+
)
197+
fs2 = self.refine7(F.interpolate(fs1, fm2.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm3)
198+
fs3 = self.refine8(
199+
F.interpolate(fs2, pool_x.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm4
200+
)
201+
fs4 = self.refine9(
202+
F.interpolate(fs3, conv_x.size()[2:], mode=self.upsample_mode, align_corners=True) + gcfm5
203+
)
204+
return self.refine10(
205+
F.interpolate(
206+
fs4,
207+
org_input.size()[2:],
208+
mode=self.upsample_mode,
209+
align_corners=True,
212210
)
211+
)
213212

214213

215214
class MCFCN(FCN):

monai/transforms/intensity/array.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1330,7 +1330,7 @@ def __init__(
13301330
raise AssertionError(
13311331
"If a sequence is passed to k_intensity, then a sequence of locations must be passed to loc"
13321332
)
1333-
elif len(k_intensity) != len(loc):
1333+
if len(k_intensity) != len(loc):
13341334
raise AssertionError("There must be one intensity_factor value for each tuple of indices in loc.")
13351335
if isinstance(self.loc[0], Sequence) and k_intensity is not None:
13361336
if not isinstance(self.k_intensity, Sequence):
@@ -1541,8 +1541,7 @@ def _make_sequence(self, x: torch.Tensor) -> Sequence[Sequence[float]]:
15411541
if not isinstance(self.intensity_range[0], Sequence):
15421542
intensity_range = (ensure_tuple(self.intensity_range),) * x.shape[0]
15431543
return intensity_range
1544-
else:
1545-
return ensure_tuple(self.intensity_range)
1544+
return ensure_tuple(self.intensity_range)
15461545
else:
15471546
# set default range if one not provided
15481547
return self._set_default_range(x)

monai/transforms/post/array.py

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -334,12 +334,11 @@ def __call__(self, img: NdarrayTensor) -> NdarrayTensor:
334334
"""
335335
if isinstance(img, np.ndarray):
336336
return np.asarray(np.where(np.isin(img, self.applied_labels), img, 0))
337-
elif isinstance(img, torch.Tensor):
337+
if isinstance(img, torch.Tensor):
338338
img_arr = img.detach().cpu().numpy()
339339
img_arr = self(img_arr)
340340
return torch.as_tensor(img_arr, device=img.device)
341-
else:
342-
raise NotImplementedError(f"{self.__class__} can not handle data of type {type(img)}.")
341+
raise NotImplementedError(f"{self.__class__} can not handle data of type {type(img)}.")
343342

344343

345344
class FillHoles(Transform):
@@ -415,12 +414,11 @@ def __call__(self, img: NdarrayTensor) -> NdarrayTensor:
415414
"""
416415
if isinstance(img, np.ndarray):
417416
return fill_holes(img, self.applied_labels, self.connectivity)
418-
elif isinstance(img, torch.Tensor):
417+
if isinstance(img, torch.Tensor):
419418
img_arr = img.detach().cpu().numpy()
420419
img_arr = self(img_arr)
421420
return torch.as_tensor(img_arr, device=img.device)
422-
else:
423-
raise NotImplementedError(f"{self.__class__} can not handle data of type {type(img)}.")
421+
raise NotImplementedError(f"{self.__class__} can not handle data of type {type(img)}.")
424422

425423

426424
class LabelToContour(Transform):

monai/transforms/utility/array.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1001,8 +1001,7 @@ def __call__(
10011001
def _compute(op: Callable, data: np.ndarray):
10021002
if self.channel_wise:
10031003
return [op(c) for c in data]
1004-
else:
1005-
return op(data)
1004+
return op(data)
10061005

10071006
custom_index = 0
10081007
for o in self.ops:

monai/transforms/utils.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1043,7 +1043,7 @@ def convert_to_tensor(data):
10431043
"""
10441044
if isinstance(data, torch.Tensor):
10451045
return data.contiguous()
1046-
elif isinstance(data, np.ndarray):
1046+
if isinstance(data, np.ndarray):
10471047
# skip array of string classes and object, refer to:
10481048
# https://github.com/pytorch/pytorch/blob/v1.9.0/torch/utils/data/_utils/collate.py#L13
10491049
if re.search(r"[SaUO]", data.dtype.str) is None:
@@ -1107,11 +1107,11 @@ def tensor_to_numpy(data):
11071107
if isinstance(data, torch.Tensor):
11081108
# invert Tensor to numpy, if scalar data, convert to number
11091109
return data.item() if data.ndim == 0 else np.ascontiguousarray(data.detach().cpu().numpy())
1110-
elif isinstance(data, dict):
1110+
if isinstance(data, dict):
11111111
return {k: tensor_to_numpy(v) for k, v in data.items()}
1112-
elif isinstance(data, list):
1112+
if isinstance(data, list):
11131113
return [tensor_to_numpy(i) for i in data]
1114-
elif isinstance(data, tuple):
1114+
if isinstance(data, tuple):
11151115
return tuple(tensor_to_numpy(i) for i in data)
11161116

11171117
return data

monai/utils/deprecated.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -100,9 +100,8 @@ def _wrapper(*args, **kwargs):
100100

101101
if is_func:
102102
return _wrapper
103-
else:
104-
obj.__init__ = _wrapper
105-
return obj
103+
obj.__init__ = _wrapper
104+
return obj
106105

107106
return _decorator
108107

monai/utils/dist.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ def get_dist_device():
3434
backend = dist.get_backend()
3535
if backend == "nccl" and torch.cuda.is_available():
3636
return torch.device(f"cuda:{torch.cuda.current_device()}")
37-
elif backend == "gloo":
37+
if backend == "gloo":
3838
return torch.device("cpu")
3939
return None
4040

monai/utils/jupyter_utils.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -224,8 +224,7 @@ def _get_loss(data):
224224

225225
if isinstance(output, list):
226226
return _get_loss(output[0])
227-
else:
228-
return _get_loss(output)
227+
return _get_loss(output)
229228

230229

231230
class StatusMembers(Enum):

0 commit comments

Comments
 (0)