|
| 1 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 2 | +# or more contributor license agreements. See the NOTICE file |
| 3 | +# distributed with this work for additional information |
| 4 | +# regarding copyright ownership. The ASF licenses this file |
| 5 | +# to you under the Apache License, Version 2.0 (the |
| 6 | +# "License"); you may not use this file except in compliance |
| 7 | +# with the License. You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, |
| 12 | +# software distributed under the License is distributed on an |
| 13 | +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 14 | +# KIND, either express or implied. See the License for the |
| 15 | +# specific language governing permissions and limitations |
| 16 | +# under the License. |
| 17 | + |
| 18 | +import Base: + |
| 19 | + |
| 20 | +""" |
| 21 | + +(args...) |
| 22 | + .+(args...) |
| 23 | +
|
| 24 | +Summation. Multiple arguments of either scalar or `NDArray` could be |
| 25 | +added together. Note at least the first or second argument needs to be an |
| 26 | +`NDArray` to avoid ambiguity of built-in summation. |
| 27 | +""" |
| 28 | ++(x::NDArray) = x |
| 29 | ++(x::NDArray, y::NDArray) = _plus(x, y) |
| 30 | ++(x::NDArray, y::Real) = _plus_scalar(x, scalar = y) |
| 31 | ++(y::Real, x::NDArray) = _plus_scalar(x, scalar = y) |
| 32 | + |
| 33 | +broadcasted(::typeof(+), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = |
| 34 | + _broadcast_add(x, y) |
| 35 | + |
| 36 | +""" |
| 37 | + sub_from!(dst::NDArray, args::NDArrayOrReal...) |
| 38 | +
|
| 39 | +Subtract a bunch of arguments from `dst`. Inplace updating. |
| 40 | +""" |
| 41 | +function sub_from!(dst::NDArray, arg::NDArrayOrReal) |
| 42 | + @assert dst.writable |
| 43 | + if isa(arg, Real) |
| 44 | + _minus_scalar(dst, scalar = arg, out = dst) |
| 45 | + else |
| 46 | + _minus!(dst, arg) |
| 47 | + end |
| 48 | + dst |
| 49 | +end |
| 50 | + |
| 51 | +import Base: - |
| 52 | + |
| 53 | +""" |
| 54 | + -(x::NDArray) |
| 55 | + -(x, y) |
| 56 | + .-(x, y) |
| 57 | +
|
| 58 | +Subtraction `x - y`, of scalar types or `NDArray`. |
| 59 | +Or create the negative of `x`. |
| 60 | +""" |
| 61 | +-(x::NDArray) = _mul_scalar(x, scalar = -one(eltype(x))) |
| 62 | +-(x::NDArray, y::NDArray) = _minus(x, y) |
| 63 | +-(x::NDArray, y::Real) = _minus_scalar(x, scalar = y) |
| 64 | +-(y::Real, x::NDArray) = _rminus_scalar(x, scalar = y) |
| 65 | + |
| 66 | +broadcasted(::typeof(-), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = |
| 67 | + _broadcast_minus(x, y) |
| 68 | + |
| 69 | +""" |
| 70 | + mul_to!(dst::NDArray, arg::NDArrayOrReal) |
| 71 | +
|
| 72 | +Elementwise multiplication into `dst` of either a scalar or an `NDArray` of the same shape. |
| 73 | +Inplace updating. |
| 74 | +""" |
| 75 | +function mul_to!(dst::NDArray, arg::NDArrayOrReal) |
| 76 | + @assert dst.writable |
| 77 | + if isa(arg, Real) |
| 78 | + _mul_scalar(dst, scalar = arg, out = dst) |
| 79 | + else |
| 80 | + _mul(dst, arg, out = dst) |
| 81 | + end |
| 82 | + dst |
| 83 | +end |
| 84 | + |
| 85 | +import Base: * |
| 86 | + |
| 87 | +""" |
| 88 | + .*(x, y) |
| 89 | +
|
| 90 | +Elementwise multiplication for `NDArray`. |
| 91 | +""" |
| 92 | +*(x::NDArray, y::Real) = _mul_scalar(x, scalar = y) |
| 93 | +*(y::Real, x::NDArray) = _mul_scalar(x, scalar = y) |
| 94 | + |
| 95 | +broadcasted(::typeof(*), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = |
| 96 | + _mul(x, y) |
| 97 | +broadcasted(::typeof(*), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = |
| 98 | + _broadcast_mul(x, y) |
| 99 | + |
| 100 | +""" |
| 101 | + *(A::NDArray, B::NDArray) |
| 102 | +
|
| 103 | +Matrix/tensor multiplication. |
| 104 | +""" |
| 105 | +*(x::NDArray{T}, y::NDArray{T}) where T = x ⋅ y |
| 106 | + |
| 107 | +LinearAlgebra.adjoint(x::NDArray{T,1}) where T = transpose(x) |
| 108 | +LinearAlgebra.adjoint(x::NDArray{T,2}) where T = transpose(x) |
| 109 | + |
| 110 | +""" |
| 111 | + div_from!(dst::NDArray, arg::NDArrayOrReal) |
| 112 | +
|
| 113 | +Elementwise divide a scalar or an `NDArray` of the same shape from `dst`. Inplace updating. |
| 114 | +""" |
| 115 | +function div_from!(dst::NDArray, arg::NDArrayOrReal) |
| 116 | + @assert dst.writable |
| 117 | + if isa(arg, Real) |
| 118 | + _div_scalar(dst, scalar = arg, out = dst) |
| 119 | + else |
| 120 | + _div(dst, arg, out = dst) |
| 121 | + end |
| 122 | + dst |
| 123 | +end |
| 124 | + |
| 125 | +function div_from!(dst::NDArray{T}, arg::Real) where {T<:Integer} |
| 126 | + @assert dst.writable |
| 127 | + @assert(round(T, arg) != zero(T), "Integer divided by zero") |
| 128 | + _div_scalar(dst, scalar = arg, out = dst) |
| 129 | + dst |
| 130 | +end |
| 131 | + |
| 132 | +""" |
| 133 | + rdiv_from!(x:: Real, y::NDArray) |
| 134 | +
|
| 135 | +Elementwise divide a scalar by an `NDArray`. Inplace updating. |
| 136 | +""" |
| 137 | +function rdiv_from!(x::Real, y::NDArray) |
| 138 | + @assert y.writable |
| 139 | + _rdiv_scalar(y, scalar = x, out = y) |
| 140 | + y |
| 141 | +end |
| 142 | + |
| 143 | +import Base: / |
| 144 | + |
| 145 | +""" |
| 146 | + ./(x::NDArray, y::NDArray) |
| 147 | + ./(x::NDArray, y::Real) |
| 148 | + ./(x::Real, y::NDArray) |
| 149 | +
|
| 150 | +* Elementwise dividing an `NDArray` by a scalar or another `NDArray` |
| 151 | +of the same shape. |
| 152 | +
|
| 153 | +* Elementwise divide a scalar by an `NDArray`. |
| 154 | +
|
| 155 | +* Matrix division (solving linear systems) is not implemented yet. |
| 156 | +""" |
| 157 | +/(x::NDArray, y::Real) = _div_scalar(x, scalar = y) |
| 158 | + |
| 159 | +broadcasted(::typeof(/), y::Real, x::NDArray) = _rdiv_scalar(x, scalar = y) |
| 160 | +broadcasted(::typeof(/), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = |
| 161 | + _div(x, y) |
| 162 | +broadcasted(::typeof(/), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = |
| 163 | + _broadcast_div(x, y) |
| 164 | + |
| 165 | +function broadcasted(::typeof(/), x::NDArray{T}, y::Real) where {T<:Integer} |
| 166 | + @assert(round(T, y) != zero(T), "Integer divided by zero") |
| 167 | + _div_scalar(x, scalar = y) |
| 168 | +end |
| 169 | + |
| 170 | +""" |
| 171 | + mod_from!(x::NDArray, y::NDArray) |
| 172 | + mod_from!(x::NDArray, y::Real) |
| 173 | +
|
| 174 | +Elementwise modulo for `NDArray`. |
| 175 | +Inplace updating. |
| 176 | +""" |
| 177 | +mod_from!(x::NDArray, y::NDArray) = _mod!(x, y) |
| 178 | +mod_from!(x::NDArray, y::Real) = _mod_scalar!(x, y) |
| 179 | + |
| 180 | +""" |
| 181 | + rmod_from!(y::Real, x::NDArray) |
| 182 | +
|
| 183 | +Elementwise modulo for `NDArray`. |
| 184 | +Inplace updating. |
| 185 | +""" |
| 186 | +rmod_from!(y::Real, x::NDArray) = _rmod_scalar!(x, y) |
| 187 | + |
| 188 | +import Base: % |
| 189 | + |
| 190 | +""" |
| 191 | + .%(x::NDArray, y::NDArray) |
| 192 | + .%(x::NDArray, y::Real) |
| 193 | + .%(x::Real, y::NDArray) |
| 194 | +
|
| 195 | +Elementwise modulo for `NDArray`. |
| 196 | +""" |
| 197 | +%(x::NDArray, y::Real) = _mod_scalar(x, y) |
| 198 | + |
| 199 | +broadcasted(::typeof(%), y::Real, x::NDArray) = _rmod_scalar(x, y) |
| 200 | +broadcasted(::typeof(%), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = |
| 201 | + _mod(x, y) |
| 202 | +broadcasted(::typeof(%), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = |
| 203 | + _broadcast_mod(x, y) |
| 204 | + |
| 205 | +# document of `.^` is merged into SymbolicNode's |
| 206 | + |
| 207 | +broadcasted(::typeof(Base.literal_pow), ::typeof(^), x::NDArray, ::Val{s}) where {s} = |
| 208 | + _power_scalar(x, scalar = s) |
| 209 | +broadcasted(::typeof(^), x::NDArray, s::Real) = _power_scalar(x, scalar = s) |
| 210 | +broadcasted(::typeof(^), s::Real, x::NDArray) = _rpower_scalar(x, scalar = s) |
| 211 | + |
| 212 | +broadcasted(::typeof(^), ::Irrational{:ℯ}, x::NDArray) = exp(x) |
| 213 | +broadcasted(::typeof(^), x::NDArray, s::Irrational) = _power_scalar(x, scalar = s) |
| 214 | +broadcasted(::typeof(^), s::Irrational, x::NDArray) = _rpower_scalar(x, scalar = s) |
| 215 | + |
| 216 | +broadcasted(::typeof(^), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = |
| 217 | + _power(x, y) |
| 218 | +broadcasted(::typeof(^), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = |
| 219 | + _broadcast_power(x, y) |
| 220 | + |
| 221 | +_nddoc[:clip] = _nddoc[:clip!] = |
| 222 | +""" |
| 223 | + clip(x::NDArray, min, max) |
| 224 | + clip!(x::NDArray, min, max) |
| 225 | +
|
| 226 | +Clips (limits) the values in `NDArray`. |
| 227 | +Given an interval, values outside the interval are clipped to the interval edges. |
| 228 | +Clipping `x` between `min` and `x` would be: |
| 229 | +
|
| 230 | +```julia |
| 231 | +clip(x, min_, max_) = max(min(x, max_), min_)) |
| 232 | +``` |
| 233 | +
|
| 234 | +```jldoctest |
| 235 | +julia> x = NDArray(1:9); |
| 236 | +
|
| 237 | +julia> mx.clip(x, 2, 8)' |
| 238 | +1×9 mx.NDArray{Int64,2} @ CPU0: |
| 239 | + 2 2 3 4 5 6 7 8 8 |
| 240 | +``` |
| 241 | +
|
| 242 | +The storage type of clip output depends on storage types of inputs and the |
| 243 | +`min`, `max` parameter values: |
| 244 | +
|
| 245 | +- clip(default) = default |
| 246 | +- clip(row_sparse, min <= 0, max >= 0) = row_sparse |
| 247 | +- clip(csr, min <= 0, max >= 0) = csr |
| 248 | +- clip(row_sparse, min < 0, max < 0) = default |
| 249 | +- clip(row_sparse, min > 0, max > 0) = default |
| 250 | +- clip(csr, min < 0, max < 0) = csr |
| 251 | +- clip(csr, min > 0, max > 0) = csr |
| 252 | +""" |
| 253 | +@_remap clip(x::NDArray, min::Real, max::Real) clip(x; a_min = min, a_max = max) |
| 254 | +@_remap clip!(x::NDArray, min::Real, max::Real) clip(x; a_min = min, a_max = max) |
| 255 | + |
| 256 | +################################################################################ |
| 257 | +# remapping to solving type unstablility |
| 258 | +################################################################################ |
| 259 | + |
| 260 | +@_remap _plus(x::NDArray, y::NDArray) _plus(x, y) |
| 261 | +@_remap _plus!(x::NDArray, y::NDArray) _plus(x, y) |
| 262 | + |
| 263 | +@_remap _minus(x::NDArray, y::NDArray) _minus(x, y) |
| 264 | +@_remap _minus!(x::NDArray, y::NDArray) _minus(x, y) |
| 265 | + |
| 266 | +@_remap _mod(x::NDArray, y::NDArray) _mod(x, y) |
| 267 | +@_remap _mod!(x::NDArray, y::NDArray) _mod(x, y) |
| 268 | + |
| 269 | +@_remap _mod_scalar(x::NDArray, y::Real) _mod_scalar(x; scalar = y) |
| 270 | +@_remap _mod_scalar!(x::NDArray, y::Real) _mod_scalar(x; scalar = y) |
| 271 | + |
| 272 | +@_remap _rmod_scalar(x::NDArray, y::Real) _rmod_scalar(x; scalar = y) |
| 273 | +@_remap _rmod_scalar!(x::NDArray, y::Real) _rmod_scalar(x; scalar = y) |
| 274 | + |
| 275 | +@_remap _broadcast_add(x::NDArray, y::NDArray) broadcast_add(x, y) |
| 276 | +@_remap _broadcast_add!(x::NDArray, y::NDArray) broadcast_add(x, y) |
| 277 | + |
| 278 | +@_remap _broadcast_minus(x::NDArray, y::NDArray) broadcast_minus(x, y) |
| 279 | +@_remap _broadcast_minus!(x::NDArray, y::NDArray) broadcast_minus(x, y) |
| 280 | + |
| 281 | +@_remap _broadcast_mul(x::NDArray, y::NDArray) broadcast_mul(x, y) |
| 282 | +@_remap _broadcast_mul!(x::NDArray, y::NDArray) broadcast_mul(x, y) |
| 283 | + |
| 284 | +@_remap _broadcast_div(x::NDArray, y::NDArray) broadcast_div(x, y) |
| 285 | +@_remap _broadcast_div!(x::NDArray, y::NDArray) broadcast_div(x, y) |
| 286 | + |
| 287 | +@_remap _broadcast_mod(x::NDArray, y::NDArray) broadcast_mod(x, y) |
| 288 | +@_remap _broadcast_mod!(x::NDArray, y::NDArray) broadcast_mod(x, y) |
| 289 | + |
| 290 | +@_remap _broadcast_power(x::NDArray, y::NDArray) broadcast_power(x, y) |
| 291 | +@_remap _broadcast_power!(x::NDArray, y::NDArray) broadcast_power(x, y) |
0 commit comments