You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Here's and example of FSDP and QLoRA fine-tuning of 4-bit Quantized [Llama-4-Scout-17B-16E :material-arrow-top-right-thin:{ .external }](https://huggingface.co/axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16) on 2xH100 NVIDIA GPUs using [Axolotl :material-arrow-top-right-thin:{ .external }](https://github.com/OpenAccess-AI-Collective/axolotl){:target="_blank"}
The memory estimates assume FP16 precision for model weights, with low-rank adaptation (LoRA/QLoRA) layers comprising 1% of the total model parameters.
The source-code for deployment examples can be found in
283
+
[`examples/llms/llama` :material-arrow-top-right-thin:{ .external }](https://github.com/dstackai/dstack/blob/master/examples/llms/llama) and the source-code for the finetuning example can be found in [`examples/fine-tuning/axolotl` :material-arrow-top-right-thin:{ .external }](https://github.com/dstackai/dstack/blob/master/examples/fine-tuning/axolotl){:target="_blank"}.
0 commit comments