|
| 1 | + |
| 2 | +import array |
| 3 | +import math |
| 4 | + |
| 5 | +DATA_TYPECODE = 'h' # int16 |
| 6 | + |
| 7 | + |
| 8 | +def feature_names() -> list[str]: |
| 9 | + cls = Feature |
| 10 | + |
| 11 | + features = {} # index -> name |
| 12 | + for key, value in cls.__dict__.items(): |
| 13 | + if key.startswith('__') or callable(value): |
| 14 | + continue |
| 15 | + if features.get(value): |
| 16 | + raise ValueError(f"Duplicated value {value}") |
| 17 | + features[value] = key |
| 18 | + |
| 19 | + names = [] |
| 20 | + for idx, value in enumerate(sorted(features.keys())): |
| 21 | + if idx != value: |
| 22 | + raise ValueError(f'Holes in enum') |
| 23 | + |
| 24 | + names.append(features[value]) |
| 25 | + |
| 26 | + return names |
| 27 | + |
| 28 | +class Feature: |
| 29 | + orient_w = 0 |
| 30 | + orient_x = 1 |
| 31 | + orient_y = 2 |
| 32 | + orient_z = 3 |
| 33 | + sma = 4 |
| 34 | + mag_rms = 5 |
| 35 | + x_rms = 6 |
| 36 | + y_rms = 7 |
| 37 | + z_rms = 8 |
| 38 | + |
| 39 | +N_FEATURES = 9 |
| 40 | + |
| 41 | + |
| 42 | +def compute_sma(x_data : array.array, y_data : array.array, z_data : array.array) -> float: |
| 43 | + """Signal Magnitude Area (SMA)""" |
| 44 | + |
| 45 | + n = len(x_data) |
| 46 | + sma_sum = 0.0 |
| 47 | + for x, y, z in zip(x_data, y_data, z_data): |
| 48 | + sma_sum += abs(x) + abs(y) + abs(z) |
| 49 | + |
| 50 | + sma = sma_sum / n |
| 51 | + return sma |
| 52 | + |
| 53 | +def compute_magnitude_rms(x_data : array.array, y_data : array.array, z_data : array.array) -> float: |
| 54 | + |
| 55 | + n = len(x_data) |
| 56 | + agg = 0.0 |
| 57 | + for x, y, z in zip(x_data, y_data, z_data): |
| 58 | + agg += (x*x) + (y*y) + (z*z) |
| 59 | + |
| 60 | + rms = math.sqrt(agg / n) |
| 61 | + return rms |
| 62 | + |
| 63 | +def compute_rms(data : array.array) -> tuple[float]: |
| 64 | + |
| 65 | + n = len(data) |
| 66 | + agg = 0.0 |
| 67 | + for v in data: |
| 68 | + agg += (v*v) |
| 69 | + |
| 70 | + rms = math.sqrt(agg / n) |
| 71 | + return rms |
| 72 | + |
| 73 | +def compute_pitch_roll(x : float, y : float, z : float) -> tuple[float]: |
| 74 | + """In degrees""" |
| 75 | + |
| 76 | + roll = round(math.degrees(math.atan2(y, z)), 2) |
| 77 | + denominator = math.sqrt(y * y + z * z) |
| 78 | + pitch = round(math.degrees(math.atan2(-x, denominator)), 2) |
| 79 | + |
| 80 | + return pitch, roll |
| 81 | + |
| 82 | + |
| 83 | +def calculate_features_xyz(xyz : tuple[array.array]) -> array.array: |
| 84 | + |
| 85 | + xo, yo, zo = xyz |
| 86 | + |
| 87 | + if not (len(xo) == len(yo) == len(zo)): |
| 88 | + raise ValueError("Input data lists must have the same length.") |
| 89 | + |
| 90 | + window_length = len(xo) |
| 91 | + |
| 92 | + # Output array |
| 93 | + feature_data = array.array('f', (0 for i in range(N_FEATURES))) |
| 94 | + |
| 95 | + |
| 96 | + # Gravity separation |
| 97 | + # FIXME: replace mean with a low-pass filter at 0.5 Hz. Say Chebychev 2 order |
| 98 | + # and to subtract the continues values. |
| 99 | + # !! need to be able to initialize IIR filter state to first sample |
| 100 | + gravity_x = sum(xo) / window_length |
| 101 | + gravity_y = sum(yo) / window_length |
| 102 | + gravity_z = sum(zo) / window_length |
| 103 | + |
| 104 | + linear_x = array.array(DATA_TYPECODE, (0 for _ in range(window_length))) |
| 105 | + linear_y = array.array(DATA_TYPECODE, (0 for _ in range(window_length))) |
| 106 | + linear_z = array.array(DATA_TYPECODE, (0 for _ in range(window_length))) |
| 107 | + |
| 108 | + |
| 109 | + for i in range(window_length): |
| 110 | + i = int(i) # XXX ?? |
| 111 | + linear_x[i] = int(xo[i] - gravity_x) |
| 112 | + linear_y[i] = int(yo[i] - gravity_y) |
| 113 | + linear_z[i] = int(zo[i] - gravity_z) |
| 114 | + |
| 115 | + # Orientation |
| 116 | + # normalize gravity vector |
| 117 | + #gravity_magnitude = math.sqrt(gravity_x*gravity_x + gravity_y*gravity_y + gravity_z*gravity_z) |
| 118 | + #ox = gravity_x/gravity_magnitude |
| 119 | + #oy = gravity_y/gravity_magnitude |
| 120 | + #oz = gravity_z/gravity_magnitude |
| 121 | + #print(ox, oy, oz) |
| 122 | + |
| 123 | + #roll, pitch = compute_pitch_roll(ox, oy, oz) |
| 124 | + #feature_data[Feature.pitch] = pitch |
| 125 | + #feature_data[Feature.roll] = roll |
| 126 | + |
| 127 | + orientation_q = tilt_quaternion_from_accel(gravity_x, gravity_y, gravity_z) |
| 128 | + feature_data[Feature.orient_w] = orientation_q[0] |
| 129 | + feature_data[Feature.orient_x] = orientation_q[1] |
| 130 | + feature_data[Feature.orient_y] = orientation_q[2] |
| 131 | + feature_data[Feature.orient_z] = orientation_q[3] |
| 132 | + |
| 133 | + |
| 134 | + # Overall motion |
| 135 | + #feature_data[Feature.sma] = compute_sma(linear_x, linear_y, linear_z) |
| 136 | + #feature_data[Feature.mag_rms] = compute_magnitude_rms(linear_x, linear_y, linear_z) |
| 137 | + |
| 138 | + # Per-axis motion |
| 139 | + #feature_data[Feature.x_rms] = compute_rms(linear_x) |
| 140 | + #feature_data[Feature.y_rms] = compute_rms(linear_y) |
| 141 | + #feature_data[Feature.z_rms] = compute_rms(linear_z) |
| 142 | + |
| 143 | + print(orientation_q) |
| 144 | + |
| 145 | + |
| 146 | + return feature_data |
| 147 | + |
| 148 | + |
| 149 | +def normalize(v): |
| 150 | + mag = math.sqrt(sum(c*c for c in v)) |
| 151 | + if mag == 0: |
| 152 | + return (0.0, 0.0, 0.0) |
| 153 | + return tuple(c / mag for c in v) |
| 154 | + |
| 155 | +def dot(v1, v2): |
| 156 | + return sum(a*b for a, b in zip(v1, v2)) |
| 157 | + |
| 158 | +def cross(v1, v2): |
| 159 | + return ( |
| 160 | + v1[1]*v2[2] - v1[2]*v2[1], |
| 161 | + v1[2]*v2[0] - v1[0]*v2[2], |
| 162 | + v1[0]*v2[1] - v1[1]*v2[0] |
| 163 | + ) |
| 164 | + |
| 165 | +def tilt_quaternion_from_accel(a_x, a_y, a_z): |
| 166 | + # Gravity vector measured by accelerometer (assumed already low-pass filtered) |
| 167 | + g = normalize((a_x, a_y, a_z)) |
| 168 | + |
| 169 | + # Reference "down" vector in world space |
| 170 | + ref = (0.0, 0.0, 1.0) |
| 171 | + |
| 172 | + # Compute axis and angle between vectors |
| 173 | + axis = cross(ref, g) |
| 174 | + axis_mag = math.sqrt(sum(c*c for c in axis)) |
| 175 | + |
| 176 | + if axis_mag < 1e-6: |
| 177 | + # Vectors are nearly aligned or opposite |
| 178 | + if dot(ref, g) > 0.999: |
| 179 | + # Identity rotation (device is flat, facing up) |
| 180 | + return (1.0, 0.0, 0.0, 0.0) |
| 181 | + else: |
| 182 | + # 180° rotation around X or Y (choose arbitrary orthogonal axis) |
| 183 | + return (0.0, 1.0, 0.0, 0.0) # Flip around X |
| 184 | + |
| 185 | + axis = normalize(axis) |
| 186 | + angle = math.acos(max(-1.0, min(1.0, dot(ref, g)))) # Clamp dot product to avoid domain error |
| 187 | + |
| 188 | + # Convert axis-angle to quaternion |
| 189 | + half_angle = angle / 2 |
| 190 | + sin_half = math.sin(half_angle) |
| 191 | + q_w = math.cos(half_angle) |
| 192 | + q_x = axis[0] * sin_half |
| 193 | + q_y = axis[1] * sin_half |
| 194 | + q_z = axis[2] * sin_half |
| 195 | + |
| 196 | + return (q_w, q_x, q_y, q_z) |
| 197 | + |
| 198 | + |
| 199 | +def test_compute(): |
| 200 | + |
| 201 | + window_length = 50 |
| 202 | + |
| 203 | + x = array.array(DATA_TYPECODE, (0 for _ in range(window_length))) |
| 204 | + y = array.array(DATA_TYPECODE, (0 for _ in range(window_length))) |
| 205 | + z = array.array(DATA_TYPECODE, (0 for _ in range(window_length))) |
| 206 | + |
| 207 | + features = calculate_features_xyz((x, y, z)) |
| 208 | + |
| 209 | + names = feature_names() |
| 210 | + assert len(names) == len(features) |
| 211 | + |
| 212 | + |
| 213 | +def test_pitch_rotation(): |
| 214 | + |
| 215 | + print("\n--- Simulating Pitch (X-axis) Rotation ---") |
| 216 | + # Rotate around X-axis (pitch) |
| 217 | + for angle_deg in range(-90, 91, 15): |
| 218 | + rad = math.radians(angle_deg) |
| 219 | + # Simulated gravity vector for X-axis rotation |
| 220 | + a_x = math.sin(rad) |
| 221 | + a_y = 0 |
| 222 | + a_z = math.cos(rad) |
| 223 | + |
| 224 | + a_xn, a_yn, a_zn = normalize(a_x, a_y, a_z) |
| 225 | + pitch, roll = compute_pitch_roll(a_xn, a_yn, a_zn) |
| 226 | + |
| 227 | + print(f"{angle_deg:6} | {a_xn:+.2f} {a_yn:+.2f} {a_zn:+.2f} | {roll:+6.1f}° {pitch:+6.1f}°") |
| 228 | + |
| 229 | +def test_roll_rotation(): |
| 230 | + |
| 231 | + print("\n--- Simulating Roll (Y-axis) Rotation ---") |
| 232 | + for angle_deg in range(-90, 91, 15): |
| 233 | + rad = math.radians(angle_deg) |
| 234 | + a_x = 0 |
| 235 | + a_y = math.sin(rad) |
| 236 | + a_z = math.cos(rad) |
| 237 | + |
| 238 | + a_xn, a_yn, a_zn = normalize(a_x, a_y, a_z) |
| 239 | + pitch, roll = compute_pitch_roll(a_xn, a_yn, a_zn) |
| 240 | + |
| 241 | + print(f"{angle_deg:6} | {a_xn:+.2f} {a_yn:+.2f} {a_zn:+.2f} | {roll:+6.1f}° {pitch:+6.1f}°") |
| 242 | + |
| 243 | + |
| 244 | +if __name__ == '__main__': |
| 245 | + |
| 246 | + #test_compute() |
| 247 | + test_pitch_rotation() |
| 248 | + test_roll_rotation() |
| 249 | + |
| 250 | + print('PASS') |
0 commit comments