|
| 1 | +// Copyright © 2025 Apple Inc. |
| 2 | + |
| 3 | +#include "mlx/backend/common/utils.h" |
| 4 | +#include "mlx/backend/cuda/device.h" |
| 5 | +#include "mlx/backend/cuda/dtype_utils.cuh" |
| 6 | +#include "mlx/backend/cuda/kernels/utils.cuh" |
| 7 | +#include "mlx/backend/gpu/copy.h" |
| 8 | +#include "mlx/dtype_utils.h" |
| 9 | +#include "mlx/primitives.h" |
| 10 | + |
| 11 | +#include <nvtx3/nvtx3.hpp> |
| 12 | +#include <thrust/device_ptr.h> |
| 13 | +#include <thrust/transform.h> |
| 14 | +#include <cub/device/device_segmented_sort.cuh> |
| 15 | + |
| 16 | +#include <cassert> |
| 17 | +#include <numeric> |
| 18 | + |
| 19 | +namespace mlx::core { |
| 20 | + |
| 21 | +namespace { |
| 22 | + |
| 23 | +template <typename T> |
| 24 | +struct ModOp { |
| 25 | + T divisor; |
| 26 | + __device__ T operator()(T x) { |
| 27 | + return x % divisor; |
| 28 | + } |
| 29 | +}; |
| 30 | + |
| 31 | +// We can not use any op in eval, make an utility. |
| 32 | +array swapaxes_in_eval(const array& in, int axis1, int axis2) { |
| 33 | + std::vector<int> axes(in.ndim()); |
| 34 | + std::iota(axes.begin(), axes.end(), 0); |
| 35 | + std::swap(axes[axis1], axes[axis2]); |
| 36 | + // TODO: Share the code with Transpose::eval. |
| 37 | + Shape shape(axes.size()); |
| 38 | + Strides strides(in.ndim()); |
| 39 | + for (size_t ax = 0; ax < axes.size(); ++ax) { |
| 40 | + shape[ax] = in.shape()[axes[ax]]; |
| 41 | + strides[ax] = in.strides()[axes[ax]]; |
| 42 | + } |
| 43 | + auto flags = in.flags(); |
| 44 | + if (flags.contiguous) { |
| 45 | + auto [_, row_contiguous, col_contiguous] = check_contiguity(shape, strides); |
| 46 | + flags.row_contiguous = row_contiguous; |
| 47 | + flags.col_contiguous = col_contiguous; |
| 48 | + } |
| 49 | + array out(shape, in.dtype(), nullptr, {}); |
| 50 | + out.copy_shared_buffer(in, strides, flags, in.data_size()); |
| 51 | + return out; |
| 52 | +} |
| 53 | + |
| 54 | +template <typename... Args> |
| 55 | +void segmented_sort_pairs(cu::CommandEncoder& encoder, Args&&... args) { |
| 56 | + // Allocate temporary storage. |
| 57 | + size_t size; |
| 58 | + CHECK_CUDA_ERROR( |
| 59 | + cub::DeviceSegmentedSort::StableSortPairs(nullptr, size, args...)); |
| 60 | + array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8); |
| 61 | + encoder.add_temporary(temp); |
| 62 | + // Run op. |
| 63 | + CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs( |
| 64 | + temp.data<void>(), size, args...)); |
| 65 | +} |
| 66 | + |
| 67 | +template <typename... Args> |
| 68 | +void segmented_sort(cu::CommandEncoder& encoder, Args&&... args) { |
| 69 | + // Allocate temporary storage. |
| 70 | + size_t size; |
| 71 | + CHECK_CUDA_ERROR( |
| 72 | + cub::DeviceSegmentedSort::StableSortKeys(nullptr, size, args...)); |
| 73 | + array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8); |
| 74 | + encoder.add_temporary(temp); |
| 75 | + // Run op. |
| 76 | + CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys( |
| 77 | + temp.data<void>(), size, args...)); |
| 78 | +} |
| 79 | + |
| 80 | +void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) { |
| 81 | + array out = out_; |
| 82 | + auto& encoder = cu::get_command_encoder(s); |
| 83 | + encoder.set_input_array(in); |
| 84 | + encoder.set_output_array(out); |
| 85 | + |
| 86 | + if (axis < 0) { |
| 87 | + axis += in.ndim(); |
| 88 | + } |
| 89 | + int nsort = in.shape(axis); |
| 90 | + int nsegments = in.data_size() / nsort; |
| 91 | + int last_dim = in.ndim() - 1; |
| 92 | + |
| 93 | + // If we are not sorting the innermost dimension of a contiguous array, |
| 94 | + // transpose and make a copy. |
| 95 | + bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1; |
| 96 | + if (!is_segmented_sort) { |
| 97 | + array trans = swapaxes_in_eval(in, axis, last_dim); |
| 98 | + in = array(trans.shape(), trans.dtype(), nullptr, {}); |
| 99 | + copy_gpu(trans, in, CopyType::General, s); |
| 100 | + encoder.add_temporary(in); |
| 101 | + out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype()); |
| 102 | + encoder.add_temporary(out); |
| 103 | + } else { |
| 104 | + out.set_data(allocator::malloc(out.nbytes())); |
| 105 | + } |
| 106 | + |
| 107 | + encoder.launch_kernel([&](cudaStream_t stream) { |
| 108 | + MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, { |
| 109 | + if constexpr (!std::is_same_v<CTYPE, complex64_t>) { |
| 110 | + using Type = cuda_type_t<CTYPE>; |
| 111 | + auto offsets = thrust::make_transform_iterator( |
| 112 | + thrust::make_counting_iterator(0), |
| 113 | + [nsort] __device__(int i) { return i * nsort; }); |
| 114 | + if (argsort) { |
| 115 | + // Indices in the sorted dimension. |
| 116 | + array indices( |
| 117 | + allocator::malloc(out.nbytes()), in.shape(), out.dtype()); |
| 118 | + encoder.add_temporary(indices); |
| 119 | + thrust::transform( |
| 120 | + cu::thrust_policy(stream), |
| 121 | + thrust::counting_iterator<uint32_t>(0), |
| 122 | + thrust::counting_iterator<uint32_t>(indices.data_size()), |
| 123 | + thrust::device_pointer_cast(indices.data<uint32_t>()), |
| 124 | + ModOp<uint32_t>{static_cast<uint32_t>(nsort)}); |
| 125 | + |
| 126 | + // In argsort though we don't need the result of sorted values, the |
| 127 | + // API requires us to provide an array to store it. |
| 128 | + array discard(allocator::malloc(in.nbytes()), in.shape(), in.dtype()); |
| 129 | + encoder.add_temporary(discard); |
| 130 | + |
| 131 | + segmented_sort_pairs( |
| 132 | + encoder, |
| 133 | + in.data<Type>(), |
| 134 | + discard.data<Type>(), |
| 135 | + indices.data<uint32_t>(), |
| 136 | + out.data<uint32_t>(), |
| 137 | + in.data_size(), |
| 138 | + nsegments, |
| 139 | + offsets, |
| 140 | + offsets + 1, |
| 141 | + stream); |
| 142 | + } else { |
| 143 | + segmented_sort( |
| 144 | + encoder, |
| 145 | + in.data<Type>(), |
| 146 | + out.data<Type>(), |
| 147 | + in.data_size(), |
| 148 | + nsegments, |
| 149 | + offsets, |
| 150 | + offsets + 1, |
| 151 | + stream); |
| 152 | + } |
| 153 | + } else { |
| 154 | + throw std::runtime_error( |
| 155 | + "CUDA backend does not support sorting complex numbers"); |
| 156 | + } |
| 157 | + }); |
| 158 | + }); |
| 159 | + |
| 160 | + if (!is_segmented_sort) { |
| 161 | + // Swap the sorted axis back. |
| 162 | + // TODO: Do in-place transpose instead of using a temporary out array. |
| 163 | + copy_gpu(swapaxes_in_eval(out, axis, last_dim), out_, CopyType::General, s); |
| 164 | + } |
| 165 | +} |
| 166 | + |
| 167 | +} // namespace |
| 168 | + |
| 169 | +void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) { |
| 170 | + nvtx3::scoped_range r("ArgSort::eval_gpu"); |
| 171 | + assert(inputs.size() == 1); |
| 172 | + gpu_sort(stream(), inputs[0], out, axis_, true); |
| 173 | +} |
| 174 | + |
| 175 | +void Sort::eval_gpu(const std::vector<array>& inputs, array& out) { |
| 176 | + nvtx3::scoped_range r("Sort::eval_gpu"); |
| 177 | + assert(inputs.size() == 1); |
| 178 | + gpu_sort(stream(), inputs[0], out, axis_, false); |
| 179 | +} |
| 180 | + |
| 181 | +} // namespace mlx::core |
0 commit comments