|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "b68543d5e71ceeb2", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import os\n", |
| 11 | + "from graphdatascience import GraphDataScience" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "id": "e685a47b61f968ef", |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "NEO4J_URI = \"bolt://localhost:7687\"\n", |
| 22 | + "NEO4J_DB = \"neo4j\"" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": null, |
| 28 | + "id": "initial_id", |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "if os.environ.get(\"NEO4J_USER\") and os.environ.get(\"NEO4J_PASSWORD\"):\n", |
| 33 | + " NEO4J_AUTH = (\n", |
| 34 | + " os.environ.get(\"NEO4J_USER\"),\n", |
| 35 | + " os.environ.get(\"NEO4J_PASSWORD\"),\n", |
| 36 | + " )\n", |
| 37 | + "gds = GraphDataScience(NEO4J_URI, auth=NEO4J_AUTH, database=NEO4J_DB)" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "id": "a14f06aebe1ed34c", |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "_ = gds.run_cypher(\n", |
| 48 | + " \"\"\"\n", |
| 49 | + " CREATE\n", |
| 50 | + " (dan:Person {name: 'Dan'}),\n", |
| 51 | + " (annie:Person {name: 'Annie'}),\n", |
| 52 | + " (matt:Person {name: 'Matt'}),\n", |
| 53 | + " (jeff:Person {name: 'Jeff'}),\n", |
| 54 | + " (brie:Person {name: 'Brie'}),\n", |
| 55 | + " (elsa:Person {name: 'Elsa'}),\n", |
| 56 | + "\n", |
| 57 | + " (cookies:Product {name: 'Cookies'}),\n", |
| 58 | + " (tomatoes:Product {name: 'Tomatoes'}),\n", |
| 59 | + " (cucumber:Product {name: 'Cucumber'}),\n", |
| 60 | + " (celery:Product {name: 'Celery'}),\n", |
| 61 | + " (kale:Product {name: 'Kale'}),\n", |
| 62 | + " (milk:Product {name: 'Milk'}),\n", |
| 63 | + " (chocolate:Product {name: 'Chocolate'}),\n", |
| 64 | + "\n", |
| 65 | + " (dan)-[:BUYS {amount: 1.2}]->(cookies),\n", |
| 66 | + " (dan)-[:BUYS {amount: 3.2}]->(milk),\n", |
| 67 | + " (dan)-[:BUYS {amount: 2.2}]->(chocolate),\n", |
| 68 | + "\n", |
| 69 | + " (annie)-[:BUYS {amount: 1.2}]->(cucumber),\n", |
| 70 | + " (annie)-[:BUYS {amount: 3.2}]->(milk),\n", |
| 71 | + " (annie)-[:BUYS {amount: 3.2}]->(tomatoes),\n", |
| 72 | + "\n", |
| 73 | + " (matt)-[:BUYS {amount: 3}]->(tomatoes),\n", |
| 74 | + " (matt)-[:BUYS {amount: 2}]->(kale),\n", |
| 75 | + " (matt)-[:BUYS {amount: 1}]->(cucumber),\n", |
| 76 | + "\n", |
| 77 | + " (jeff)-[:BUYS {amount: 3}]->(cookies),\n", |
| 78 | + " (jeff)-[:BUYS {amount: 2}]->(milk),\n", |
| 79 | + "\n", |
| 80 | + " (brie)-[:BUYS {amount: 1}]->(tomatoes),\n", |
| 81 | + " (brie)-[:BUYS {amount: 2}]->(milk),\n", |
| 82 | + " (brie)-[:BUYS {amount: 2}]->(kale),\n", |
| 83 | + " (brie)-[:BUYS {amount: 3}]->(cucumber),\n", |
| 84 | + " (brie)-[:BUYS {amount: 0.3}]->(celery),\n", |
| 85 | + "\n", |
| 86 | + " (elsa)-[:BUYS {amount: 3}]->(chocolate),\n", |
| 87 | + " (elsa)-[:BUYS {amount: 3}]->(milk)\n", |
| 88 | + " \"\"\"\n", |
| 89 | + ")\n", |
| 90 | + "node_projection = [\"Person\", \"Product\"]\n", |
| 91 | + "relationship_projection = {\"BUYS\": {\"orientation\": \"UNDIRECTED\", \"properties\": \"amount\"}}\n", |
| 92 | + "G, result = gds.graph.project(\"purchases222\", node_projection, relationship_projection)\n", |
| 93 | + "print(f\"The projection took {result['projectMillis']} ms\")\n", |
| 94 | + "print(f\"Graph '{G.name()}' node count: {G.node_count()}\")\n", |
| 95 | + "print(f\"Graph '{G.name()}' node labels: {G.node_labels()}\")" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "e049480efa34e8ca", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "gds.model.transe.train(\n", |
| 106 | + " G,\n", |
| 107 | + " proportions=[0.8, 0.1, 0.1],\n", |
| 108 | + " embedding_dimension=50,\n", |
| 109 | + " batch_size=512,\n", |
| 110 | + " epochs=100,\n", |
| 111 | + " optimizer=\"Adam\",\n", |
| 112 | + " optimizer_kwargs={\"lr\": 0.01, \"weight_decay\": 5e-4},\n", |
| 113 | + " # loss\n", |
| 114 | + ")" |
| 115 | + ] |
| 116 | + } |
| 117 | + ], |
| 118 | + "metadata": { |
| 119 | + "language_info": { |
| 120 | + "name": "python" |
| 121 | + } |
| 122 | + }, |
| 123 | + "nbformat": 4, |
| 124 | + "nbformat_minor": 5 |
| 125 | +} |
0 commit comments