@@ -846,72 +846,6 @@ This version of the operator has been available since version 1 of the default O
846
846
<dd >Constrain input and output types to float tensors.</dd >
847
847
</dl >
848
848
849
- ### <a name =" DynamicSlice-1 " ></a >** DynamicSlice-1** </a >
850
-
851
- Produces a slice of the input tensor along multiple axes. Similar to numpy:
852
- https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
853
- Slices uses ` axes ` , ` starts ` and ` ends ` inputs to specify the start and end
854
- dimension for each axis in the list of axes, it uses this information to
855
- slice the input ` data ` tensor. If a negative value is passed for any of the
856
- start or end indices, it represent number of elements before the end of that
857
- dimension. If the value passed to start or end is larger than the ` n ` (the
858
- number of elements in this dimension), it represents ` n ` . For slicing to the
859
- end of a dimension with unknown size, it is recommended to pass in ` INT_MAX ` .
860
- If ` axes ` are omitted, they are set to ` [0, ..., ndim-1] ` .
861
- Example 1:
862
- data = [
863
- [ 1, 2, 3, 4] ,
864
- [ 5, 6, 7, 8] ,
865
- ]
866
- axes = [ 0, 1]
867
- starts = [ 1, 0]
868
- ends = [ 2, 3]
869
- result = [
870
- [ 5, 6, 7] ,
871
- ]
872
- Example 2:
873
- data = [
874
- [ 1, 2, 3, 4] ,
875
- [ 5, 6, 7, 8] ,
876
- ]
877
- starts = [ 0, 1]
878
- ends = [ -1, 1000]
879
- result = [
880
- [ 2, 3, 4] ,
881
- ]
882
-
883
- #### Version
884
-
885
- No versioning maintained for experimental ops.
886
- #### Inputs (3 - 4)
887
-
888
- <dl >
889
- <dt ><tt >data</tt > : T</dt >
890
- <dd >Tensor of data to extract slices from.</dd >
891
- <dt ><tt >starts</tt > : Tind</dt >
892
- <dd >1-D tensor of starting indices of corresponding axis in `axes`</dd >
893
- <dt ><tt >ends</tt > : Tind</dt >
894
- <dd >1-D tensor of ending indices (exclusive) of corresponding axis in axes</dd >
895
- <dt ><tt >axes</tt > (optional) : Tind</dt >
896
- <dd >1-D tensor of axes that `starts` and `ends` apply to.</dd >
897
- </dl >
898
-
899
- #### Outputs
900
-
901
- <dl >
902
- <dt ><tt >output</tt > : T</dt >
903
- <dd >Sliced data tensor.</dd >
904
- </dl >
905
-
906
- #### Type Constraints
907
-
908
- <dl >
909
- <dt ><tt >T</tt > : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)</dt >
910
- <dd >Constrain input and output types to all tensor types.</dd >
911
- <dt ><tt >Tind</tt > : tensor(int32), tensor(int64)</dt >
912
- <dd >Constrain indices to integer types</dd >
913
- </dl >
914
-
915
849
### <a name =" Elu-1 " ></a >** Elu-1** </a >
916
850
917
851
Elu takes one input data (Tensor<T >) and produces one output data
@@ -9554,6 +9488,78 @@ This version of the operator has been available since version 9 of the default O
9554
9488
</dl >
9555
9489
9556
9490
## Version 10 of the default ONNX operator set
9491
+ ### <a name =" Slice-10 " ></a >** Slice-10** </a >
9492
+
9493
+ Produces a slice of the input tensor along multiple axes. Similar to numpy:
9494
+ https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9495
+ Slices uses ` starts ` , ` ends ` , ` axes ` and ` steps ` inputs to specify the start and end
9496
+ dimension and step for each axis in the list of axes, it uses this information to
9497
+ slice the input ` data ` tensor. If a negative value is passed for any of the
9498
+ start or end indices, it represent number of elements before the end of that
9499
+ dimension. If the value passed to start or end is larger than the ` n ` (the
9500
+ number of elements in this dimension), it represents ` n ` . For slicing to the
9501
+ end of a dimension with unknown size, it is recommended to pass in ` INT_MAX ` .
9502
+ If a negative value is passed for step, it represents slicing backward.
9503
+ If ` axes ` are omitted, they are set to ` [0, ..., ndim-1] ` .
9504
+ If ` steps ` are omitted, they are set to ` [1, ..., 1] ` of length ` len(starts) `
9505
+ Example 1:
9506
+ data = [
9507
+ [ 1, 2, 3, 4] ,
9508
+ [ 5, 6, 7, 8] ,
9509
+ ]
9510
+ axes = [ 0, 1]
9511
+ starts = [ 1, 0]
9512
+ ends = [ 2, 3]
9513
+ steps = [ 1, 2]
9514
+ result = [
9515
+ [ 5, 7] ,
9516
+ ]
9517
+ Example 2:
9518
+ data = [
9519
+ [ 1, 2, 3, 4] ,
9520
+ [ 5, 6, 7, 8] ,
9521
+ ]
9522
+ starts = [ 0, 1]
9523
+ ends = [ -1, 1000]
9524
+ result = [
9525
+ [ 2, 3, 4] ,
9526
+ ]
9527
+
9528
+ #### Version
9529
+
9530
+ This version of the operator has been available since version 10 of the default ONNX operator set.
9531
+
9532
+ #### Inputs (3 - 5)
9533
+
9534
+ <dl >
9535
+ <dt ><tt >data</tt > : T</dt >
9536
+ <dd >Tensor of data to extract slices from.</dd >
9537
+ <dt ><tt >starts</tt > : Tind</dt >
9538
+ <dd >1-D tensor of starting indices of corresponding axis in `axes`</dd >
9539
+ <dt ><tt >ends</tt > : Tind</dt >
9540
+ <dd >1-D tensor of ending indices (exclusive) of corresponding axis in `axes`</dd >
9541
+ <dt ><tt >axes</tt > (optional) : Tind</dt >
9542
+ <dd >1-D tensor of axes that `starts` and `ends` apply to.</dd >
9543
+ <dt ><tt >steps</tt > (optional) : Tind</dt >
9544
+ <dd >1-D tensor of slice step of corresponding axis in `axes`. Default to 1. </dd >
9545
+ </dl >
9546
+
9547
+ #### Outputs
9548
+
9549
+ <dl >
9550
+ <dt ><tt >output</tt > : T</dt >
9551
+ <dd >Sliced data tensor.</dd >
9552
+ </dl >
9553
+
9554
+ #### Type Constraints
9555
+
9556
+ <dl >
9557
+ <dt ><tt >T</tt > : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)</dt >
9558
+ <dd >Constrain input and output types to all tensor types.</dd >
9559
+ <dt ><tt >Tind</tt > : tensor(int32), tensor(int64)</dt >
9560
+ <dd >Constrain indices to integer types</dd >
9561
+ </dl >
9562
+
9557
9563
### <a name =" StringNormalizer-10 " ></a >** StringNormalizer-10** </a >
9558
9564
9559
9565
StringNormalization performs string operations for basic cleaning.
0 commit comments