34
34
def setup_common_training_handlers (
35
35
trainer : Engine ,
36
36
train_sampler : Optional [DistributedSampler ] = None ,
37
- to_save : Optional [Dict [ str , Any ] ] = None ,
37
+ to_save : Optional [Mapping ] = None ,
38
38
save_every_iters : int = 1000 ,
39
39
output_path : Optional [str ] = None ,
40
40
lr_scheduler : Optional [Union [ParamScheduler , _LRScheduler ]] = None ,
@@ -47,7 +47,7 @@ def setup_common_training_handlers(
47
47
stop_on_nan : bool = True ,
48
48
clear_cuda_cache : bool = True ,
49
49
save_handler : Optional [Union [Callable , BaseSaveHandler ]] = None ,
50
- ** kwargs : Any ,
50
+ ** kwargs : Any
51
51
):
52
52
"""Helper method to setup trainer with common handlers (it also supports distributed configuration):
53
53
- :class:`~ignite.handlers.TerminateOnNan`
@@ -125,7 +125,7 @@ class to use to store ``to_save``. See :class:`~ignite.handlers.checkpoint.Check
125
125
126
126
def _setup_common_training_handlers (
127
127
trainer : Engine ,
128
- to_save : Optional [Dict [ str , Any ] ] = None ,
128
+ to_save : Optional [Mapping ] = None ,
129
129
save_every_iters : int = 1000 ,
130
130
output_path : Optional [str ] = None ,
131
131
lr_scheduler : Optional [Union [ParamScheduler , _LRScheduler ]] = None ,
@@ -137,7 +137,7 @@ def _setup_common_training_handlers(
137
137
stop_on_nan : bool = True ,
138
138
clear_cuda_cache : bool = True ,
139
139
save_handler : Optional [Union [Callable , BaseSaveHandler ]] = None ,
140
- ** kwargs : Any ,
140
+ ** kwargs : Any
141
141
):
142
142
if output_path is not None and save_handler is not None :
143
143
raise ValueError (
@@ -207,7 +207,7 @@ def output_transform(x, index, name):
207
207
def _setup_common_distrib_training_handlers (
208
208
trainer : Engine ,
209
209
train_sampler : Optional [DistributedSampler ] = None ,
210
- to_save : Optional [Dict [ str , Any ] ] = None ,
210
+ to_save : Optional [Mapping ] = None ,
211
211
save_every_iters : int = 1000 ,
212
212
output_path : Optional [str ] = None ,
213
213
lr_scheduler : Optional [Union [ParamScheduler , _LRScheduler ]] = None ,
@@ -219,7 +219,7 @@ def _setup_common_distrib_training_handlers(
219
219
stop_on_nan : bool = True ,
220
220
clear_cuda_cache : bool = True ,
221
221
save_handler : Optional [Union [Callable , BaseSaveHandler ]] = None ,
222
- ** kwargs : Any ,
222
+ ** kwargs : Any
223
223
):
224
224
225
225
_setup_common_training_handlers (
@@ -313,7 +313,7 @@ def setup_tb_logging(
313
313
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
314
314
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
315
315
log_every_iters : int = 100 ,
316
- ** kwargs : Any ,
316
+ ** kwargs : Any
317
317
):
318
318
"""Method to setup TensorBoard logging on trainer and a list of evaluators. Logged metrics are:
319
319
- Training metrics, e.g. running average loss values
@@ -344,7 +344,7 @@ def setup_visdom_logging(
344
344
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
345
345
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
346
346
log_every_iters : int = 100 ,
347
- ** kwargs : Any ,
347
+ ** kwargs : Any
348
348
):
349
349
"""Method to setup Visdom logging on trainer and a list of evaluators. Logged metrics are:
350
350
- Training metrics, e.g. running average loss values
@@ -374,7 +374,7 @@ def setup_mlflow_logging(
374
374
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
375
375
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
376
376
log_every_iters : int = 100 ,
377
- ** kwargs : Any ,
377
+ ** kwargs : Any
378
378
):
379
379
"""Method to setup MLflow logging on trainer and a list of evaluators. Logged metrics are:
380
380
- Training metrics, e.g. running average loss values
@@ -404,7 +404,7 @@ def setup_neptune_logging(
404
404
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
405
405
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
406
406
log_every_iters : int = 100 ,
407
- ** kwargs : Any ,
407
+ ** kwargs : Any
408
408
):
409
409
"""Method to setup Neptune logging on trainer and a list of evaluators. Logged metrics are:
410
410
- Training metrics, e.g. running average loss values
@@ -434,7 +434,7 @@ def setup_wandb_logging(
434
434
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
435
435
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
436
436
log_every_iters : int = 100 ,
437
- ** kwargs : Any ,
437
+ ** kwargs : Any
438
438
):
439
439
"""Method to setup WandB logging on trainer and a list of evaluators. Logged metrics are:
440
440
- Training metrics, e.g. running average loss values
@@ -464,7 +464,7 @@ def setup_plx_logging(
464
464
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
465
465
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
466
466
log_every_iters : int = 100 ,
467
- ** kwargs : Any ,
467
+ ** kwargs : Any
468
468
):
469
469
"""Method to setup Polyaxon logging on trainer and a list of evaluators. Logged metrics are:
470
470
- Training metrics, e.g. running average loss values
@@ -494,7 +494,7 @@ def setup_trains_logging(
494
494
optimizers : Optional [Union [Optimizer , Dict [str , Optimizer ]]] = None ,
495
495
evaluators : Optional [Union [Engine , Dict [str , Engine ]]] = None ,
496
496
log_every_iters : int = 100 ,
497
- ** kwargs : Any ,
497
+ ** kwargs : Any
498
498
):
499
499
"""Method to setup Trains logging on trainer and a list of evaluators. Logged metrics are:
500
500
- Training metrics, e.g. running average loss values
@@ -530,12 +530,12 @@ def wrapper(engine: Engine):
530
530
def gen_save_best_models_by_val_score (
531
531
save_handler : Union [Callable , BaseSaveHandler ],
532
532
evaluator : Engine ,
533
- models : torch .nn .Module ,
533
+ models : Union [ torch .nn .Module , Dict [ str , torch . nn . Module ]] ,
534
534
metric_name : str ,
535
535
n_saved : int = 3 ,
536
536
trainer : Optional [Engine ] = None ,
537
537
tag : str = "val" ,
538
- ** kwargs : Any ,
538
+ ** kwargs : Any
539
539
):
540
540
"""Method adds a handler to ``evaluator`` to save ``n_saved`` of best models based on the metric
541
541
(named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``).
@@ -593,7 +593,7 @@ def save_best_model_by_val_score(
593
593
n_saved : int = 3 ,
594
594
trainer : Optional [Engine ] = None ,
595
595
tag : str = "val" ,
596
- ** kwargs : Any ,
596
+ ** kwargs : Any
597
597
):
598
598
"""Method adds a handler to ``evaluator`` to save on a disk ``n_saved`` of best models based on the metric
599
599
(named by ``metric_name``) provided by ``evaluator`` (i.e. ``evaluator.state.metrics[metric_name]``).
0 commit comments