@@ -37,8 +37,8 @@ Using existing packages for GNN, you still have to code up the essential pipelin
37
37
GraphGym is a perfect place for your to start learning * standardized GNN implementation and evaluation* .
38
38
39
39
<div align =" center " >
40
- <img align =" center " src =" https://github.com/snap-stanford/GraphGym/blob /master/docs/design_space.png " width =" 400px " />
41
- <figcaption >< b ><br >Figure 1: Modularized GNN implementation.</b ></ figcaption >
40
+ <img align =" center " src =" https://github.com/snap-stanford/GraphGym/raw /master/docs/design_space.png " width =" 400px " />
41
+ <b ><br >Figure 1: Modularized GNN implementation.</b >
42
42
</div >
43
43
44
44
<br >
@@ -51,10 +51,11 @@ GraphGym provides a *simple interface to try out thousands of GNNs in parallel*
51
51
GraphGym also recommends a "go-to" GNN design space, after investigating 10 million GNN model-task combinations.
52
52
53
53
<div align =" center " >
54
- <img align =" center " src =" https://github.com/snap-stanford/GraphGym/blob /master/docs/rank.png " width =" 1000px " />
55
- <figcaption >< b ><br >Figure 2: A guideline for desirable GNN design choices. <br >(Sampling from 10 million GNN model-task combinations.) </ b ></ figcaption >
54
+ <img align =" center " src =" https://github.com/snap-stanford/GraphGym/raw /master/docs/rank.png " width =" 1000px " />
55
+ <b ><br >Figure 2: A guideline for desirable GNN design choices.</ b > <br >(Sampling from 10 million GNN model-task combinations.)
56
56
</div >
57
57
58
+
58
59
<br >
59
60
60
61
@@ -67,10 +68,11 @@ Moreover, GraphGym can help you easily do hyper-parameter search, and *visualize
67
68
In sum, GraphGym can greatly facilitate your GNN research.
68
69
69
70
<div align =" center " >
70
- <img align =" center " src =" https://github.com/snap-stanford/GraphGym/blob /master/docs/evaluation.png " width =" 1000px " />
71
- <figcaption >< b ><br >Figure 3: Evaluation of a given GNN design dimension (BatchNorm here).</ b ></ figcaption >
71
+ <img align =" center " src =" https://github.com/snap-stanford/GraphGym/raw /master/docs/evaluation.png " width =" 1000px " />
72
+ <b ><br >Figure 3: Evaluation of a given GNN design dimension</ b > (BatchNorm here).
72
73
</div >
73
74
75
+
74
76
<br >
75
77
76
78
## Installation
@@ -228,7 +230,7 @@ For example, the base file could specify an experiment of 3-layer GCN for Cora n
228
230
Then, the grid file specifies how to perturb the experiment along different dimension, such as number of layers,
229
231
model architecture, dataset, level of task, etc.
230
232
231
-
233
+
232
234
** 2.4 Generate config files for the batch of experiments,** based on the information specified above.
233
235
For example, in [` run/run_batch.sh` ](run/run_batch.sh):
234
236
` ` ` bash
@@ -322,8 +324,8 @@ design_space.ipynb # reproducing all the analyses in the paper
322
324
` ` `
323
325
324
326
< div align=" center" >
325
- < img align=" center" src=" https://github.com/snap-stanford/GraphGym/blob /master/docs/overview.png" width=" 900px" />
326
- < figcaption>< b><br> Figure 4: Overview of the proposed GNN design space and task space.< /b></figcaption >
327
+ < img align=" center" src=" https://github.com/snap-stanford/GraphGym/raw /master/docs/overview.png" width=" 900px" />
328
+ < b><br> Figure 4: Overview of the proposed GNN design space and task space.< /b>
327
329
< /div>
328
330
329
331
@@ -343,8 +345,8 @@ bash run_idgnn_graph.sh # Reproduce ID-GNN graph-level results
343
345
` ` `
344
346
345
347
< div align=" center" >
346
- < img align=" center" src=" https://github.com/snap-stanford/GraphGym/blob /master/docs/IDGNN.png" width=" 900px" />
347
- < figcaption>< b><br> Figure 5: Overview of Identity-aware Graph Neural Networks (ID-GNN).< /b></figcaption >
348
+ < img align=" center" src=" https://github.com/snap-stanford/GraphGym/raw /master/docs/IDGNN.png" width=" 900px" />
349
+ < b><br> Figure 5: Overview of Identity-aware Graph Neural Networks (ID-GNN).< /b>
348
350
< /div>
349
351
350
352
0 commit comments