Skip to content

Commit e23c178

Browse files
author
Raimondas Galvelis
authored
Merge pull request #55 from raimis/update_install
Update the installation instructions
2 parents 9d472a1 + 3c74cb9 commit e23c178

File tree

1 file changed

+12
-19
lines changed

1 file changed

+12
-19
lines changed

README.md

Lines changed: 12 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -1,35 +1,28 @@
1-
# TorchMD-net
1+
# TorchMD-NET
22

3-
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials. It offers an efficient and fast implementation and it is integrated in GPU-accelerated molecular dynamics code like [ACEMD](https://www.acellera.com/products/molecular-dynamics-software-gpu-acemd/) and [OpenMM](https://www.openmm.org). See the full paper at https://arxiv.org/abs/2202.02541.
3+
TorchMD-NET provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials. It offers an efficient and fast implementation and it is integrated in GPU-accelerated molecular dynamics code like [ACEMD](https://www.acellera.com/products/molecular-dynamics-software-gpu-acemd/) and [OpenMM](https://www.openmm.org). See the full paper at https://arxiv.org/abs/2202.02541.
44

55
## Installation
6-
Create a new conda environment using Python 3.8 via
7-
```
8-
conda create --name torchmd python=3.8
9-
conda activate torchmd
10-
```
116

12-
### Install PyTorch
13-
Then, install PyTorch according to your hardware specifications (more information [here](https://pytorch.org/get-started/locally/#start-locally)), e.g. for CUDA 11.1 and the most recent version of PyTorch use
7+
Clone the repository:
148
```
15-
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
9+
git clone https://github.com/torchmd/torchmd-net.git
10+
cd torchmd-net
1611
```
17-
### Install PyTorch Geometric
18-
Install `pytorch-geometric` with its dependencies through
12+
13+
Create a Conda environment and activate it:
1914
```
20-
conda install pytorch-geometric -c rusty1s -c conda-forge
15+
conda env create -f environment.yml
16+
conda activate torchmd-net
2117
```
22-
To install PyTorch Geometric via pip or for PyTorch < 1.8, see https://github.com/rusty1s/pytorch_geometric#installation.
2318

24-
### Install TorchMD-Net
25-
Download and install the `torchmd-net` repository via
19+
Install TorchMD-NET into the Conda environment:
2620
```
27-
git clone https://github.com/compsciencelab/torchmd-net.git
28-
pip install -e torchmd-net/
21+
pip install -e .
2922
```
3023

3124
## Performance
32-
The TorchMD-net equivariant Transformer (ET) is competitive with previous methods on the MD17 benchmark dataset.
25+
The TorchMD-NET equivariant Transformer (ET) is competitive with previous methods on the MD17 benchmark dataset.
3326

3427

3528
![image](https://user-images.githubusercontent.com/36135990/146565069-a3c03827-5ee2-44b0-89b0-9e02e129b6df.png)

0 commit comments

Comments
 (0)