- Areal.ai API Documentation
- Table of Contents
- Introduction
- Getting Started
- Authentication
- Organization Specific URLs
- Document Classification API
- Data Extraction API
- CD Balancer API
- Annotation API
- Loan Info Meta
- Async API Call
- Webhooks
- Email Notifications
- Get Documents
- Search and Get Sessions
- Feedback API for Extracted Data
- Document Status Change
- Sample OCR Response
Welcome to Areal.ai. Areal.ai provides automated real-time image classification and data extraction services. Areal.ai’s REST API takes an image or PDF file and returns a document type ID and extracted data in a structured format.
Areal.ai can be used in various use-cases including operations that require real time document processing such as underwriting, customer onboarding, document ingestion and more. Areal.ai document classification enables customers to give instant feedback to their users about the validity of their documents and to accelerate document ingestion.
In this document, we will review how to get started using Areal.ai APIs
Document processing is accomplished with a single API call. To make a successful API call to process a document, provide the following information:
- Authorization headers
- Name of the file
- Content type
- PDF or image in the base64 format
Sample Python code is as follows:
import base64
import json
import requests
headers = {
'Authorization': 'ApiKey Customer_account_id:Customer_key', # TODO: Update here
'Content-Type': 'application/json',
}
file_name = 'drivers_license.png' # TODO: Update here
file_type = ‘pdf’
image_type = 'data:application/pdf;base64,' if file_type.lower() == "pdf" else 'data:image/png;base64,'
image_base64 = base64.b64encode(open(file_name, 'rb').read()).decode('ascii')
data = {
'source': "web",
'name': file_name,
'image': image_type + str(image_base64),
"template_uuid": template_uuid # TODO: Optional
}
response = requests.post('https://areal.ai/api/v1/ocr/', headers=headers, json=data)
Areal.ai’s API supports concurrent requests/calls. To process multiple documents at a time, you can make multiple separate API call per each document.
API connections must be over HTTPS secured channel.
The authentication is handled via the API key in the header. The key is generated by Areal.ai and is unique to each user.
In order to authenticate, construct the following phrase and add it to the headers with the "Authorization" key.
'Authorization': 'ApiKey Customer_account_id:Customer_key', # TODO: Update here
Customer Account ID is the Username and the Customer Key is the API Key provided by Areal. Both parts are separated by a colon.
Please contact [email protected] to get an API key.
If your organization is provided with a specific Areal.ai url such as "acme.areal.ai", then you need to make all API calls to that specific URL such as:
response = requests.post('https://acme.areal.ai/api/v1/ocr/', headers=headers, json=data)
Document Classification API: https://areal.ai/api/v1/ocr/
Request Method: POST.
The following parameters must be provided:
Headers:
headers = {
'Authorization': 'ApiKey Customer_account_id:Customer_key',
'Content-Type' : 'application/json'
}
Body:
post_data = {
'source': "web",
'name': file_name,
'image': image_type + str(image_base64),
'template_uuid': template_uuid
}
Other optional fields are template_uuid, upload_session_uuid and upload_session_name. Template UUID basically asks platform to skip Document Classification and use provided template to extract data from the document. This could be useful for speed optimization if you alredy know the type of the document you are uploading.
Upload Sessions are used to group documents under a specific folder. Sessions are extremely useful to group all files of a mortgage application or a title document package. We will cover this more in the Sessions section below.
post_data = {
'source': "web",
'name': file_name,
'image': image_type + str(image_base64),
'template_uuid': template_uuid, // Only include this line in the payload if you intend to assign a document type/template to the uploaded document.
'upload_session_uuid':session_uuid, // Only include this line in the payload if you intend to upload the document to a specific session.
'upload_session_name':session_name,
}
Image type could be either 'data:application/pdf;base64,' for PDF files, 'data:image/png;base64,' or 'data:image/jpeg;base64,' for different image types.
A sample body data is as follows:
{ "source": "api",
"name":"postman.png",
"image":"...",
"template_uuid": template_uuid,
"upload_session_uuid":'8a67ce10-8670-11eb-a0e4-af71473a31ce'
}
A sample response to this Document Classification API call will be as follows.
results key will include a list of documents detected within the original document uploaded to the platform. Each document will have a template_uuid assigned to it. This template_uuid represents the unique ID of the document type detected.
{
"results": [
{
"document_uuid": "0583b9a6-f36b-4e78-83dd-6490099e3b41",
"extracted_data": [],
"processing_time_ms": 2968,
"template_uuid": "4e43f618-c09c-4ebb-bbce-d4666657e34c"
},
{
"document_uuid": "07226039-d402-4de0-a3b4-4b41359c497c",
"extracted_data": [],
"processing_time_ms": 1065,
"template_uuid": "a134b46f-217d-4cd3-a953-927ad98525a8"
}
],
"upload_session_uuid": "8a67ce10-8670-11eb-a0e4-af71473a31ce"
}
In addition, the response includes a unique upload_session_uuid. This upload_session_uuid will be the same UUID as the initial upload_session_uuid provided in the OCR API. If you provide a upload_session_uuid, these documents will be added to that Session Folder. If not, the Areal.ai platform will create a new session and add these documents to that session. Please note that this field should only be included in the payload if you intend to upload the document to a specific session.
Data Extraction API: https://areal.ai/api/v1/ocr/
Request Method: POST.
Data extraction API is the same API as the Document Classification API. There is no need to make separate API calls to both classify and extract data from a document. Data extraction will automatically take place once a document is classified (when a template is assigned to a document) IF data extraction is provisioned for that specific template in your organization.
In the case of data extraction, the API response will return a list of component_results.
Each Component Result contains category, name, UUID and extracted_data keys. etracted_data key field contains the details of the extracted data for that component. While component objects are assigned to template objects and are standard across all documents with the same template, extracted_data object will change from document to document since different data points will be extracted from document.
Each extracted_data contains a component object which defines the details of the data extracted. Extracted Data field contains the confidence_rate, processed_value (extracted data) and page fields.
[
{
"document_name": "W2_1_Borrower-W2.pdf",
"document_uuid": "1df9bdbd-dddd-bbbb-bfe6-a85870ad998f",
"component_results": [
{
"category": "text",
"extracted_data": [
{
"approved_value": "1545-0008",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.005555555555555556,
"page": 0,
"processed_value": "1545-0008",
"uuid": "c569e403-b7c2-4056-81ea-9fed428064a9",
"width_percent": 0.055992141453831044,
"x_percent": 0.5176817288801572,
"y_percent": 0.32083333333333336
}
],
"name": "00 - OMD",
"uuid": "6eab0e40-aaaa-bbbb-cccc-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "2017",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.022222222222222223,
"page": 0,
"processed_value": "2017",
"uuid": "3e182053-ca70-4409-81af-f6b02ae2753a",
"width_percent": 0.10805500982318271,
"x_percent": 0.4351669941060904,
"y_percent": 0.6673611111111111
}
],
"name": "00 - Year",
"uuid": "bb21fca0-aaaa-bbbb-cccc-e5e69c6c59af"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "123-45-6789",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.006944444444444444,
"page": 0,
"processed_value": "123-45-6789",
"uuid": "e48b265a-4cde-4408-83d6-f7b227d8d4ed",
"width_percent": 0.08644400785854617,
"x_percent": 0.30353634577603145,
"y_percent": 0.3229166666666667
}
],
"name": "00A - Employee SSN",
"uuid": "76d9a130-aaaa-bbbb-cccc-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "Jane A. Doe",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.008333333333333333,
"page": 0,
"processed_value": "Jane A. Doe",
"uuid": "82533e77-e466-4d80-b779-e950fae19b9e",
"width_percent": 0.0825147347740668,
"x_percent": 0.21905697445972494,
"y_percent": 0.5076388888888889
}
],
"name": "00B - Employee Name",
"uuid": "413007d5-aaaa-bbbb-cccc-bc0e9ae59d65"
}
],
}
]
Optionally, custom extracted data can also be provided when making this api call which simply skips internal data extraction process and uses provided extracted data results instead.
post_data = {
"source": "web",
"name": file_name,
"image": image_type + str(image_base64),
"template_uuid": template_uuid, # this will be used as document type instead
"upload_session_uuid":session_uuid
"upload_session_name":session_name,
"component_results": [ # as a list in the same format as output explained above.
{
"accepts_multiple": false,
"arla": "",
"category": "text",
"extracted_data": [
{
"approved_value": "1545-0008",
"confidence_rate": "0.9871",
"grouped_data": [],
"height_percent": 0.015,
"page": 0,
"processed_value": "1545-0008",
"uuid": "8fb25bde-8dca-45aa-80b9-6d75fca747e9",
"width_percent": "0.0610",
"x_percent": "0.5200",
"y_percent": "0.0940"
}
],
"name": "00 - OMD",
"uuid": "6eab0e40-e300-11e9-93dd-1f1efd155a62"
},
{
"accepts_multiple": false,
"arla": "",
"category": "text",
"extracted_data": [
{
"approved_value": "2017",
"confidence_rate": "0.9871",
"grouped_data": [],
"height_percent": 0.049,
"page": 0,
"processed_value": "2017",
"uuid": "d7515d90-6f6f-4d01-aa4f-12ef31303491",
"width_percent": "0.1180",
"x_percent": "0.4310",
"y_percent": "0.8520"
}
],
"name": "00 - Year",
"uuid": "bb21fca0-f74d-11e9-8b38-e5e69c6c59af"
}, ...
]
}
CD Balancer API: https://areal.ai/api/v1/ocr/?async_proc=1
Request Method: POST.
CD Balancer API works in similar principal as the Data Extraction API. There is also no need to make separate API calls to both classify and extract data from a document. Difference is just the payload as descibed below.
- {YOUR_FILE_BASE64} should be replaced with your file as Base64
- file_name can be anything
- file_tag must indicate the CD file is either a "user" or "lender" document
- product_name should be "cd_balancer"
- if upload_session_uuid is null, CD comparision will be creating a new session, if it's a GUID existing session will be used instead, this will help grouping the CD balancing attempts under the same session for easier access.
- if using in async mode (async_proc=1) a WebHook notification will be dispatched including the CD result and UI preview URL for quick accesss, if org has WebHook enabled.
{
"files": [
{
"file_b64": "data:application/pdf;base64,{YOUR_FILE_BASE64}",
"file_name": "user_cd.pdf",
"file_tag": "user"
},
{
"file_b64": "data:application/pdf;base64,{YOUR_FILE_BASE64}",
"file_name": "lender_cd.pdf",
"file_tag": "lender"
}
],
"product_name": "cd_balancer",
"upload_session_uuid": null
}
Areal.ai can also detect areas to be annotationed in a document. Areal.ai currently finds areas to be signed, initialized or sealed in a document. The API call to get the annotations is exactly same as the API call to classify/extract a document.
Annotation API currently supports the following entities:
- Signers (Multiple Entities)
- Notary (Single Entity)
- Witnesses (Multiple Entities)
In order to get access to our newest functionality to find annotations in a document, please contract your Areal.ai administrator.
Developers can provide additional meta data while making an API call to Areal. For example, if you would like to provide the Borrower's Name information, this information could be added to the Body section of the API call. In this case, this information should be mapped to the "signer" key within the "parties" dictionary of the "loan_info" dictionary of the API Body. For example:
{
"name":"Annotation_doc.pdf",
"loan_info":{
"external_id": "5430342343"
"parties": [
{
"name": "BUYER NAME",
"role": "signer",
"relation": "buyer" // Buyer/Borrower
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party. Acceptable fields: "buyer", "co-buyer", "seller", "co-seller", "lender", "title", "escrow", "notary"
},
{
"name": "COBUYER NAME",
"role": "signer",
"relation": "co-buyer" // Co-buyer/borrower
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party
},
{
"name": "SELLER NAME",
"role": "signer",
"relation": "seller" // Seller
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party
},
{
"name": "COSELLER NAME",
"role": "signer",
"relation": "co-seller" // Co-seller
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party
},
{
"name": "LENDER NAME",
"role": "signer",
"relation": "lender" // Lender
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party
},
{
"name": "NAME",
"role": "notary",
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party
},
{
"name": "NAME",
"role": "witness",
"id": "012345678-1234-1234-1234-01234567801234" // Customer's internal ID for this party
}
],
"transaction": {
"loan_purpose": "purchase", # Acceptable fields: "purchase", "cash-purchase", "refinance", "cash-out-refi", "no-cash-out-refi", "construction", "construction-perm", "other"
"loan_type": "FHA", # For example Jumbo-15, Jumbo-30, FHA-15, FHA-30
"purchase_price": 400,000,
"loan_amount": 320,000,
"initial_deposit": 80,000,
"additional_deposit": 80,000,
"annotation_transaction_type": "bulk", # No need to provide this if this transaction is not a bulk transaction.
},
"properties": [
{
"street": "100 Ricmond Drive",
"unit": "Apt 3",
"city": "Los Angeles",
"state": "CA",
"zip": "90411",
"county": "Los Angeles",
"parcel_id": "4142112442",
"legal_description": "Lot 504 Plat 4"
}
],
"service_providers": [
{
"name": "Great Title Company",
"relation": "title" // Title
"id": "012345678-1234-1234-1234-01234567801234" // Optional. External ID of this service provider.
},
{
"name": "Fast Escrow Company",
"relation": "escrow" // Escrow
"id": "012345678-1234-1234-1234-01234567801234" // Optional. External ID of this service provider.
},
]
},
"image":"data:application/pdf;base64,JVBERi0x..."
}
While the "loan_info" section within the Body of an API call provides tons of flexibility, Areal currently supports the following keys in the list of "parties":
- signer
- notary
- witness
Please contact your administrator for more information.
Async API Call: https://areal.ai/api/v1/ocr/?async_proc=1
Request Method: POST.
Areal.ai supports asynchronous API calls for document processing. In order to make an Async API call, the Post request should be made to the document processing endpoint with "async_proc" parameter set to 1. The following shows the required URL for the Async API call.
https://areal.ai/api/v1/ocr/?async_proc=1
Async API call response will be like the following:
{
"in_progress": true,
"results": [],
"session_url": "https://areal.ai/documents/sessions/aaaa1111-bbbb-cccc-dddd-eeee22224444",
"upload_session_uuid": "aaaa1111-bbbb-cccc-dddd-eeee22224444"
}
The "session_url" provided in this response can be presented within 3rd party software solutions to allow users to quickly locate the processed documents in Areal.ai Platform.
The "upload_session_uuid" can be used to programmatically pull the results of the document processing session. Please check the "Sessions, Search and Get Sessions" section below for more information.
Areal.ai also supports Webhooks (GET requests only). In order to activate a Webhook, URL address of an active endpoint should be provided to the Areal.ai team. Please make sure that the provided URL address is not blocked for HTTPS calls coming from the Areal.ai servers.
The Webhook payload will include different information for different cases. Currently, there are 3 different payloads.
You can test your Webhook endpoints by adding "test_webhook=1" to your query string when you make a regular API call to process files, this will actually not process files, instead it will intentionally trigger a failure Webhook notification just for testing purposes.
First Notification: Session is Created.
A notification with JSON payload will be sent when a new Session/Loan is created, this is just for the reference and does not mean that document(s) are processed yet (which might be still getting processed.) A separate notification with 'document' details will be sent when all document(s) are processed within this Session.
Payload:
{
"notification": {
"success": true,
"process_id": "GUID of the process id",
"session_uuid": "aaaa1111-bbbb-cccc-dddd-eeee22224444",
"session_name": "Loan #12345",
"created_by": "username",
"created_at": "2022-01-04 00:00:46",
"sent_at": "2022-01-04 00:00:47",
"description": "New session has been created"
}
}
Second Notification: Documents are Processed.
This notification is sent when the original document (uploaded document) is processed upon each request. The "documents" array briefly contains all new documents created as a result of the processing of the original document.
Payload:
{
"notification": {
"success": true,
"process_id": "GUID of the process id",
"session_uuid": "aaaa1111-bbbb-cccc-dddd-eeee22224444",
"session_name": "Loan #12345",
"created_by": "username",
"sent_at": "2021-11-01 00:01:40",
"description": "New document has been processed",
"documents": [{
"doc_id": "baaa0911-ebbb-eccc-dddd-aaaa33331111",
"file_name": "123345_Unclassified.pdf",
"loan_id": "loan_1233",
"template_uuid": "{a GUID of template}",
"elapsed_time": "{how much time this process spent in ms}",
"num_pages": "3",
"doc_url": "{a URL to download the doc, expires in 10 min}",
"created_at": "2022-01-04 00:02:05"
}, {
"doc_id": "caaa1211-abbb-dccc-dddd-123400996677",
"file_name": "34567_Title.pdf",
"loan_id": "loan_7890",
"template_uuid": "{a GUID of template}",
"elapsed_time": "{how much time this process spent in ms}",
"num_pages": "5",
"doc_url": "{a URL to download the doc, expires in 10 min}",
"created_at": "2022-01-04 00:02:26"
},
{...}
]
}
}
Third Notification: Proces Failed.
A notification with JSON payload will be sent when process fails due to an error.
Payload:
{
"notification": {
"success": false,
"test_webhook": true, // this is added only when true if test webhook mode is enabled
"process_id": "GUID of the process id",
"session_uuid": "aaaa1111-bbbb-cccc-dddd-eeee22224444",
"session_name": "Loan #12345",
"created_by": "username",
"created_at": "2022-01-04 00:00:46",
"sent_at": "2022-01-04 00:00:47",
"description": "Unable to process documents"
}
}
Fourth Notification: CD Balancer Actions.
This notification covers success/fail statuses for CD balancer actions such as CD comparison and CD data push.
Payload:
{
"notification": {
"success": true/false,
"process_id": "GUID of the process id if available",
"action": "string action name" # can be either of "comparison", "push"
"cd_uuid": "uuid of CD",
"cd_name": "string name of CD",
"session_uuid": "aaaa1111-bbbb-cccc-dddd-eeee22224444",
"session_name": "Loan #12345",
"created_by": "username",
"created_at": "2024-04-05 00:00:46",
"sent_at": "2024-04-05 00:00:47",
"url": "URL_OF_THE_CD_VIEW",
"document_ids": [doc1_uuid, doc2_uuid],
"description": "CD comparison has been failed" # or completed
"error": {error details here as k/v pairs if success is false}
}
}
The "session_uuid" can be used to programmatically pull the results of the document processing Session. Please check the "Sessions, Search and Get Sessions" section below for more information.
For additional quesitons, please contact the Areal.ai Team.
Areal enables you to send email notifications to your users once document processing is finished. To activate this feature, include the 'email_communication' field when making an OCR API call to Areal. This field ensures email notifications are sent to designated users upon the occurrence of a specified event.
Below is an example for the 'on_document_processing_complete' email trigger.
post_data = {
"source": "web",
"name": file_name,
"image": image_type + str(image_base64),
"template_uuid": template_uuid,
"upload_session_uuid": session_uuid,
"upload_session_name": session_name,
// Email communication fields to be populated
"email_communication": {
"to": ["[email protected]"],
"cc": ["[email protected]"],
"bcc": ["[email protected]"],
"trigger": ["on_document_processing_complete"]
}
}
Email triggers should be provided in the payload to specify when the required users should be notifid. If the trigger field is not provided, Areal will not be sending emails. Areal currently supports 2 email triggers:
- on_document_processing_complete: Upon document processing is complete, Areal sends an email to the specified user for both Fail and Success cases.
- on_cd_balancing_complete: Upon CD Balancing is complete, Areal sends an email to the specified user.
Email notifications can be sent to multiple users, provided that the email details are included in the payload.
For more information, please contact the Areal.ai customer success.
Document API: https://areal.ai/api/v1/document/
Request Method: GET.
The following filters are applicable:
document_uuid
Returns a specific document. A sample call:
https://areal.ai/api/v1/document/2dbd28a1-4b64-4525-bb51-4eacf8363f03
A sample response:
{
"created_at": "2021-03-16T03:59:26.446073",
"extracted_data": [
{
"approved_value": "50,000.00",
"component": {
"category": "text",
"name": "Wages",
"uuid": "9b1153e0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": "0.97",
"from_page_number": 0,
"height_percent": "0.0291",
"name": "1 Wages",
"processed_value": "50,000.00",
"uuid": "87390cf8-8f2a-4b6c-ab9e-1fb616097df8",
"width_percent": "0.0667",
"x_percent": "0.3469",
"y_percent": "0.7557"
},
],
"name": "postman_W2.png",
"notes": null,
"original_document_uuid": "207d61e6-268e-4ba7-94ea-5a8112ea15c1",
"page_count": 1,
"pages": [
"34efc562-05ac-48a8-886a-7b3efbc4c876"
],
"resource_uri": "/api/v1/document/2dbd28a1-4b64-4525-bb51-4eacf8363f03/",
"status": "draft",
"template": {
"name": "W2",
"uuid": "4e0550c2-ecbf-40d4-bdf0-2f9de24b525f"
},
"updated_at": "2021-03-16T03:59:26.446099",
"upload_session": {
"name": "postman",
"uuid": "6d1cd890-85f9-11eb-9ba8-614f814eb3d6"
},
"user_extracted_data": null,
"uuid": "2dbd28a1-4b64-4525-bb51-4eacf8363f03"
}
upload_session Filter
Returns all documents within that session. A sample request:
https://areal.ai/api/v1/document/?upload_session=6d1cd890-85f9-11eb-9ba8-614f814eb3d6&order_by=-updated_at&limit=100&offset=0
This request orders the results based on the updated_date.
Applicable Sorting and Filtering Parameters
Default parameters are:
- status
- created_at
- updated_at
Session API: https://areal.ai/api/v1/upload_session/
Request Method: GET.
Sessions are used to group documents under a "folder". In a mortgage application use-case, a session will represent the loan file. While in a title underwriting use-case, a session will represent the title file.
Sessions can also be used to identify a specific document processing request. For example, if you trigger a document processing request and specify a upload_session_uuid in that request, then you can find the processed documents by simply making a Get Document request and adding the upload_session filter.
3 common use-cases are:
- Getting specifics of a session
A sample request is:
https://areal.ai/api/v1/upload_session/45bd28a1-4b64-4525-bb51-4eacf8363f55
- Getting a list of sessions
This is a GET method. A sample request is:
https://areal.ai/api/v1/upload_session/?order_by=-updated_at&limit=20&offset=0&status=all
- Searching for a session
You can search for different phrases in session names and retrive sessions containing the words you are looking for. This is extremely helpful to search for mortgage or title files with certain keywords such as the address of the property. Please recall that, a session name including certain keywords (address, file number etc.) should be provided in document processing requests in order to be able to search for these keywords later.
A sample search request looks like:
http://areal.ai/api/v1/document/?limit=100&offset=0&search=SEARCH-PHRASE
The search results will return sessions and documents whose names contain or match the search phrase.
Applicable Sorting and Filtering Parameters
Default parameters are:
- status
- created_at
- updated_at
With the Feedback API, you can add, update and delete the extracted data.
API endpoint: https://areal.ai/api/v1/feedback_api/
Request Method: POST
The request payload should be a list of dictionaries. Each dictionary can have four keys: document_id
, add
, update
and delete
.
-
document_id
(required): The document id of the document you want to update. You can find the document id in the URL of the document page. -
add
: A dictionary that contains the data you want to add. The keys of this dictionary are the group ids and the values are the data you want to add. The data should be in the form of a dictionary. The keys of this dictionary are the input ids and the values are the data you want to add. -
update
: A dictionary that contains the data you want to update. The keys of this dictionary are the input ids and the values are the data you want to update. -
delete
: A list of input ids you want to delete.
Let's say you want to add a new element to the single element group in the image below.
The output below is the current output of this group.
{
"component_results": [
{
"accepts_multiple": true,
"category": "group",
"extracted_data": [
{
"approved_value": "Michael Jones",
"confidence_rate": "0.9875",
"grouped_data": [
{
"accepts_multiple": false,
"arla": "",
"category": "text",
"extracted_data": [
{
"approved_value": "Michael Jones",
"confidence_rate": "0.9875",
"grouped_data": [],
"height_percent": 0.0101,
"page": 0,
"processed_value": "Michael Jones",
"uuid": "1e03ac98-1815-42ad-844c-03700cc459ad",
"width_percent": "0.0866",
"x_percent": "0.4510",
"y_percent": "0.1237"
}
],
"name": "01A - Borrower Name",
"uuid": "f0579f53-c7b7-4665-83ed-97c94a77a67f"
}
],
"height_percent": 0.0101,
"page": 0,
"processed_value": "Michael Jones",
"uuid": "0d21a335-4261-4a29-b90c-69319ba01d86",
"width_percent": "0.0817",
"x_percent": "0.4510",
"y_percent": "0.1237"
}
],
"name": "1 - Borrower Name(s)",
"uuid": "dd2d1833-84ea-4c08-9411-a9c2c31a3263"
}
]
}
Now you can use the following raw payload to add a new group.
[
{
// Replace this with the document id without curly braces
"document_id": "{DOCUMENT_ID}",
"add": {
"dd2d1833-84ea-4c08-9411-a9c2c31a3263": [
{
"approved_value": "",
"grouped_data": {
"f0579f53-c7b7-4665-83ed-97c94a77a67f": {
"approved_value": "New Input Data"
}
}
}
]
}
}
]
After making the request with the payload above, you will get an image like below in the interface.
You can use the following payload when you want to update a data.
[
{
"document_id": "{DOCUMENT_ID}",
"update": {
"{EXTRACTED_DATA_UUID}": {
"approved_value": "Updated Data"
},
"{EXTRACTED_DATA_UUID_2}": {
"approved_value": "Updated Data 2"
}
}
}
]
You can use the following payload when you want to delete a data.
[
{
"document_id": "{DOCUMENT_ID}",
"delete": ["{EXTRACTED_DATA_UUID}", "{EXTRACTED_DATA_UUID}"]
}
]
Footnote: You can also add, delete and update operations within the same payload.
You can highlight a field using the Feedback API.
approved_value
(string): The value of the field.x_percent
(number): The x coordinate of the top-left corner of the rectangle in percentage.y_percent
(number): The y coordinate of the top-left corner of the rectangle in percentage.width_percent
(number): The width of the rectangle in percentage.height_percent
(number): The height of the rectangle in percentage.from_page_number
(number): The page number of the document where the rectangle starts.
In the following example, we will add a new group item and highlight it.
[
{
"document_id": "{DOCUMENT_ID}",
"add": {
"{COMPONENT_ID}": [
{
"approved_value": "",
"grouped_data": {
"f0579f53-c7b7-4665-83ed-97c94a77a67f": {
"approved_value": "New Input Data With Highlight",
"x_percent": 0.451,
"y_percent": 0.1237,
"width_percent": 0.0817,
"height_percent": 0.0101,
"from_page_number": 0
}
}
}
]
}
}
]
Document Feedback API: http://areal.ai/api/v1/document/document-uuid/
Request Method: PATCH.
This API is used to approve the entire document. Approving a document means that the assigned classification to a document and all extracted data fields are correct. This API should be called once all data fields are corrected using the API call above to give the best feedback back to the platform.
{
status: "active"
}
The status key-value pair above should be added to this request.
Potential values are "draft" and "active".
[
{
"component_results": [
{
"category": "text",
"extracted_data": [
{
"approved_value": "1545-0008",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.005555555555555556,
"page": 0,
"processed_value": "1545-0008",
"uuid": "c569e403-b7c2-4056-81ea-9fed428064a9",
"width_percent": 0.055992141453831044,
"x_percent": 0.5176817288801572,
"y_percent": 0.32083333333333336
}
],
"name": "00 - OMD",
"uuid": "6eab0e40-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "2017",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.022222222222222223,
"page": 0,
"processed_value": "2017",
"uuid": "3e182053-ca70-4409-81af-f6b02ae2753a",
"width_percent": 0.10805500982318271,
"x_percent": 0.4351669941060904,
"y_percent": 0.6673611111111111
}
],
"name": "00 - Year",
"uuid": "bb21fca0-f74d-11e9-8b38-e5e69c6c59af"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "123-45-6789",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.006944444444444444,
"page": 0,
"processed_value": "123-45-6789",
"uuid": "e48b265a-4cde-4408-83d6-f7b227d8d4ed",
"width_percent": 0.08644400785854617,
"x_percent": 0.30353634577603145,
"y_percent": 0.3229166666666667
}
],
"name": "00A - Employee SSN",
"uuid": "76d9a130-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "Jane A. Doe",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.008333333333333333,
"page": 0,
"processed_value": "Jane A. Doe",
"uuid": "82533e77-e466-4d80-b779-e950fae19b9e",
"width_percent": 0.0825147347740668,
"x_percent": 0.21905697445972494,
"y_percent": 0.5076388888888889
}
],
"name": "00B - Employee Name",
"uuid": "413007d5-57d3-4cf8-97ad-bc0e9ae59d65"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "123 Elm Street Anywhere Else, PA 17111",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.022222222222222223,
"page": 0,
"processed_value": "123 Elm Street Anywhere Else, PA 17111",
"uuid": "3bdbd22f-55e6-42d5-82d9-2018199d8a9c",
"width_percent": 0.17288801571709234,
"x_percent": 0.1738703339882122,
"y_percent": 0.5201388888888889
}
],
"name": "00C - Employee Address",
"uuid": "861132d0-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0,
"page": 0,
"processed_value": "",
"uuid": "d52ffc8d-ec51-44e1-9d0d-4da89a3ae10f",
"width_percent": 0,
"x_percent": 0,
"y_percent": 0
}
],
"name": "00D - Employer TIN",
"uuid": "7c16b980-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "The Big Company",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.010416666666666666,
"page": 0,
"processed_value": "The Big Company",
"uuid": "5d8bdf55-c37a-4651-b935-43f1c8c71cdb",
"width_percent": 0.1237721021611002,
"x_percent": 0.20923379174852652,
"y_percent": 0.38680555555555557
}
],
"name": "00E - Employer Name",
"uuid": "30a5303d-5773-4ff0-8b0b-445bcbcee24b"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "12 Main Street Anywhere, NC 28111",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.022916666666666665,
"page": 0,
"processed_value": "12 Main Street Anywhere, NC 28111",
"uuid": "1efbf7ef-f8ce-479a-8b4b-2377c7cadfc7",
"width_percent": 0.14047151277013753,
"x_percent": 0.19842829076620824,
"y_percent": 0.3993055555555556
}
],
"name": "00F - Employer Address",
"uuid": "94b81d30-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "50,000.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.008333333333333333,
"page": 0,
"processed_value": "50,000.00",
"uuid": "b71da0a6-a09c-41e2-bd27-044f3f097969",
"width_percent": 0.06777996070726916,
"x_percent": 0.34577603143418467,
"y_percent": 0.61875
}
],
"name": "01 - Wages",
"uuid": "9b1153e0-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "6,835.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.006944444444444444,
"page": 0,
"processed_value": "6,835.00",
"uuid": "ce048185-2421-4ee7-8943-0409ed4c588d",
"width_percent": 0.05795677799607073,
"x_percent": 0.8005893909626719,
"y_percent": 0.3506944444444444
}
],
"name": "02 - Federal",
"uuid": "a4e77c50-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "50,000.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.008333333333333333,
"page": 0,
"processed_value": "50,000.00",
"uuid": "be6c2c6e-8c3a-4db0-8bda-df44a5c29727",
"width_percent": 0.06679764243614932,
"x_percent": 0.5972495088408645,
"y_percent": 0.3798611111111111
}
],
"name": "03 - SS Wages",
"uuid": "abcc2a20-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "3,100.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.006944444444444444,
"page": 0,
"processed_value": "3,100.00",
"uuid": "01cd34dc-127f-43ce-8fa7-1b42b818ec26",
"width_percent": 0.05893909626719057,
"x_percent": 0.8005893909626719,
"y_percent": 0.3798611111111111
}
],
"name": "04 - SS Tax",
"uuid": "b0ca8bc0-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "50,000.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.009027777777777777,
"page": 0,
"processed_value": "50,000.00",
"uuid": "12513257-b679-4d93-9d9f-09afd0f6ca31",
"width_percent": 0.06581532416502947,
"x_percent": 0.5972495088408645,
"y_percent": 0.40694444444444444
}
],
"name": "05 - Medicare Wages",
"uuid": "ca43fff0-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "725.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.007638888888888889,
"page": 0,
"processed_value": "725.00",
"uuid": "39865b67-4761-472f-93c5-c078ee94d276",
"width_percent": 0.047151277013752456,
"x_percent": 0.806483300589391,
"y_percent": 0.4083333333333333
}
],
"name": "06 - Medicare Tax",
"uuid": "d0fcbbc0-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0,
"page": 0,
"processed_value": "",
"uuid": "dd40e782-043d-483b-b58b-ba25ca866d69",
"width_percent": 0,
"x_percent": 0,
"y_percent": 0
}
],
"name": "12a Box",
"uuid": "cd08decf-e179-47da-b6bb-0bc45c8efa85"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "PA",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.009027777777777777,
"page": 0,
"processed_value": "PA",
"uuid": "9e02a065-1c2c-4314-95ca-3f796703783e",
"width_percent": 0.018664047151277015,
"x_percent": 0.060903732809430254,
"y_percent": 0.6194444444444445
}
],
"name": "15 State",
"uuid": "ffcfe2b0-e300-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "50,000.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.008333333333333333,
"page": 0,
"processed_value": "50,000.00",
"uuid": "0922bf86-2095-44b7-b20e-bc8f008ebcdc",
"width_percent": 0.06777996070726916,
"x_percent": 0.34577603143418467,
"y_percent": 0.61875
}
],
"name": "16 State Wages",
"uuid": "0c0075e0-e301-11e9-93dd-1f1efd155a62"
},
{
"category": "text",
"extracted_data": [
{
"approved_value": "1,535.00",
"confidence_rate": 0.9711745381355286,
"grouped_data": [],
"height_percent": 0.006944444444444444,
"page": 0,
"processed_value": "1,535.00",
"uuid": "40cc2b53-1aeb-48f1-a6f4-41e7338681d4",
"width_percent": 0.05795677799607073,
"x_percent": 0.48821218074656186,
"y_percent": 0.6194444444444445
}
],
"name": "17 State Tax",
"uuid": "16f024a0-e301-11e9-93dd-1f1efd155a62"
}
],
"data": {
"document": {
"created_at": "2023-02-15 18:30:12.904496",
"download_urls": {
"doc_url": "",
"thumb_url": ""
},
"page_count": 1,
"status": "draft",
"updated_at": "2023-02-15 18:30:12.904517",
"upload_session": "02209a41-49c3-42f8-a2d8-516be2c914ae"
}
},
"document_name": "W2_1_Borrower-W2.pdf",
"document_uuid": "1df9bdbd-b1b1-4cf2-bfe6-a85870ad998f",
"extracted_data": [
{
"component": {
"category": "text",
"name": "00 - OMD",
"uuid": "6eab0e40-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "1545-0008",
"uuid": "c569e403-b7c2-4056-81ea-9fed428064a9"
},
{
"component": {
"category": "text",
"name": "00 - Year",
"uuid": "bb21fca0-f74d-11e9-8b38-e5e69c6c59af"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "2017",
"uuid": "3e182053-ca70-4409-81af-f6b02ae2753a"
},
{
"component": {
"category": "text",
"name": "00A - Employee SSN",
"uuid": "76d9a130-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "123-45-6789",
"uuid": "e48b265a-4cde-4408-83d6-f7b227d8d4ed"
},
{
"component": {
"category": "text",
"name": "00B - Employee Name",
"uuid": "413007d5-57d3-4cf8-97ad-bc0e9ae59d65"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "Jane A. Doe",
"uuid": "82533e77-e466-4d80-b779-e950fae19b9e"
},
{
"component": {
"category": "text",
"name": "00C - Employee Address",
"uuid": "861132d0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "123 Elm Street Anywhere Else, PA 17111",
"uuid": "3bdbd22f-55e6-42d5-82d9-2018199d8a9c"
},
{
"component": {
"category": "text",
"name": "00D - Employer TIN",
"uuid": "7c16b980-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "",
"uuid": "d52ffc8d-ec51-44e1-9d0d-4da89a3ae10f"
},
{
"component": {
"category": "text",
"name": "00E - Employer Name",
"uuid": "30a5303d-5773-4ff0-8b0b-445bcbcee24b"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "The Big Company",
"uuid": "5d8bdf55-c37a-4651-b935-43f1c8c71cdb"
},
{
"component": {
"category": "text",
"name": "00F - Employer Address",
"uuid": "94b81d30-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "12 Main Street Anywhere, NC 28111",
"uuid": "1efbf7ef-f8ce-479a-8b4b-2377c7cadfc7"
},
{
"component": {
"category": "text",
"name": "01 - Wages",
"uuid": "9b1153e0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "50,000.00",
"uuid": "b71da0a6-a09c-41e2-bd27-044f3f097969"
},
{
"component": {
"category": "text",
"name": "02 - Federal",
"uuid": "a4e77c50-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "6,835.00",
"uuid": "ce048185-2421-4ee7-8943-0409ed4c588d"
},
{
"component": {
"category": "text",
"name": "03 - SS Wages",
"uuid": "abcc2a20-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "50,000.00",
"uuid": "be6c2c6e-8c3a-4db0-8bda-df44a5c29727"
},
{
"component": {
"category": "text",
"name": "04 - SS Tax",
"uuid": "b0ca8bc0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "3,100.00",
"uuid": "01cd34dc-127f-43ce-8fa7-1b42b818ec26"
},
{
"component": {
"category": "text",
"name": "05 - Medicare Wages",
"uuid": "ca43fff0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "50,000.00",
"uuid": "12513257-b679-4d93-9d9f-09afd0f6ca31"
},
{
"component": {
"category": "text",
"name": "06 - Medicare Tax",
"uuid": "d0fcbbc0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "725.00",
"uuid": "39865b67-4761-472f-93c5-c078ee94d276"
},
{
"component": {
"category": "text",
"name": "12a Box",
"uuid": "cd08decf-e179-47da-b6bb-0bc45c8efa85"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "",
"uuid": "dd40e782-043d-483b-b58b-ba25ca866d69"
},
{
"component": {
"category": "text",
"name": "15 State",
"uuid": "ffcfe2b0-e300-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "PA",
"uuid": "9e02a065-1c2c-4314-95ca-3f796703783e"
},
{
"component": {
"category": "text",
"name": "16 State Wages",
"uuid": "0c0075e0-e301-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "50,000.00",
"uuid": "0922bf86-2095-44b7-b20e-bc8f008ebcdc"
},
{
"component": {
"category": "text",
"name": "17 State Tax",
"uuid": "16f024a0-e301-11e9-93dd-1f1efd155a62"
},
"confidence_rate": 0.97,
"page": 0,
"processed_value": "1,535.00",
"uuid": "40cc2b53-1aeb-48f1-a6f4-41e7338681d4"
}
],
"processing_time_ms": 2792,
"template_name": "",
"template_uuid": "4e0550c2-dddd-bbbb-aaaa-2f9de24b525f"
}
]