Img2Loc: Revisiting Image Geolocalization using Multi-modality Foundation Models and Image-based Retrieval-Augmented Generation
Code for Img2Loc paper presented on SIGIR 2024.
Instructions on how to install and set up the project. If you needs help to access the generated embeddings, please contact us directly.
# Clone the repository
git clone [email protected]:Douglas2Code/Img2Loc.git
# Change to the project directory
cd Img2Loc
# Create a conda environment
conda create -n img2loc python=3.10 -y
# Activate the conda environment
conda activate img2loc
# Install faiss databse following this guide
https://github.com/facebookresearch/faiss/blob/main/INSTALL.md
# Install the project dependencies
pip install -r requirements.txt
# Download MP16 dataset
http://www.multimediaeval.org/mediaeval2016/placing/
# Generate embeddings using CLIP model
https://github.com/openai/CLIP
# Generate a vector database using FAISS
https://github.com/facebookresearch/faiss/wiki/Getting-started#in-python-1
Run the streamlip application
streamlit run app.py --browser.gatherUsageStats false
This project is licensed under the MIT License - see the LICENSE file for details.
Zhongliang Zhou: [email protected] Jielu Zhang: [email protected]
If you find this project helpful, please consider cite our work.
@inproceedings{zhou2024img2loc,
title={Img2Loc: Revisiting Image Geolocalization using Multi-modality Foundation Models and Image-based Retrieval-Augmented Generation},
author={Zhou, Zhongliang and Zhang, Jielu and Guan, Zihan and Hu, Mengxuan and Lao, Ni and Mu, Lan and Li, Sheng and Mai, Gengchen},
booktitle={Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages={2749--2754},
year={2024}
}