_______ _______ _______ _______ ______ _______ ___ ___
| ___| ___| _ |_ _| __ \_ _| | |
| ___| ___| | | | | <_| |_|- -|
|___| |_______|___|___| |___| |___|__|_______|___|___|
Transform any CSV into a production-ready ML model in minutes, not months.
The Featrix Sphere API automatically builds neural embedding spaces from your data and trains high-accuracy predictors without requiring any ML expertise. Just upload your data, specify what you want to predict, and get a production API endpoint.
- π― 99.9%+ Accuracy - Achieves state-of-the-art results on real-world data
- β‘ Zero ML Knowledge Required - Upload CSV β Get Production API
- π§ Neural Embedding Spaces - Automatically discovers hidden patterns in your data
- π Real-time Training Monitoring - Watch your model train with live loss plots
- π Similarity Search - Find similar records using vector embeddings
- π Beautiful Visualizations - 2D projections of your high-dimensional data
- π Production Ready - Scalable batch predictions and real-time inference
# Actual results from fuel card fraud detection:
prediction = {
'True': 0.9999743700027466, # 99.997% confidence - IS fraud
'False': 0.000024269439, # 0.002% - not fraud
'<UNKNOWN>': 0.000001335 # 0.0001% - uncertain
}
# Perfect classification with extreme confidence!
from test_api_client import FeatrixSphereClient
# Initialize client
client = FeatrixSphereClient("http://your-sphere-server.com")
# Upload your CSV and automatically start training
session = client.upload_file_and_create_session("your_data.csv")
session_id = session.session_id
# Wait for the magic to happen (embedding space + vector DB + projections)
final_session = client.wait_for_session_completion(session_id)
# Add a predictor for your target column
client.train_single_predictor(
session_id=session_id,
target_column="is_fraud",
target_column_type="set", # "set" for classification, "scalar" for regression
epochs=50
)
# Wait for predictor training
client.wait_for_session_completion(session_id)
# Single prediction
result = client.make_prediction(session_id, {
"transaction_amount": 1500.00,
"merchant_category": "gas_station",
"location": "highway_exit"
})
print(result['prediction'])
# {'fraud': 0.95, 'legitimate': 0.05} # 95% fraud probability!
# Batch predictions on 1000s of records
csv_results = client.test_csv_predictions(
session_id=session_id,
csv_file="test_data.csv",
target_column="is_fraud",
sample_size=1000
)
print(f"Accuracy: {csv_results['accuracy_metrics']['accuracy']*100:.2f}%")
# Accuracy: 99.87% π―
# Train on transaction data
client.train_single_predictor(
session_id=session_id,
target_column="is_fraudulent",
target_column_type="set"
)
# Detect fraud in real-time
fraud_check = client.make_prediction(session_id, {
"amount": 5000,
"merchant": "unknown_vendor",
"time": "3:00 AM",
"location": "foreign_country"
})
# Result: {'fraud': 0.98, 'legitimate': 0.02} β οΈ
# Predict customer lifetime value
client.train_single_predictor(
session_id=session_id,
target_column="customer_value_segment",
target_column_type="set" # high/medium/low
)
# Classify new customers
segment = client.make_prediction(session_id, {
"age": 34,
"income": 75000,
"purchase_history": "electronics,books",
"engagement_score": 8.5
})
# Result: {'high_value': 0.87, 'medium_value': 0.12, 'low_value': 0.01}
# Predict house prices (regression)
client.train_single_predictor(
session_id=session_id,
target_column="sale_price",
target_column_type="scalar" # continuous values
)
# Get price estimates
price = client.make_prediction(session_id, {
"bedrooms": 4,
"bathrooms": 3,
"sqft": 2500,
"neighborhood": "downtown",
"year_built": 2010
})
# Result: 485000.0 (predicted price: $485,000)
# Run complete test suite
results = client.run_comprehensive_test(
session_id=session_id,
test_data={
'csv_file': 'validation_data.csv',
'target_column': 'target',
'sample_size': 500
}
)
# Results include:
# β
Individual prediction tests
# β
Batch accuracy metrics
# β
Training performance data
# β
Model confidence analysis
# Test your model on any CSV file
results = client.test_csv_predictions(
session_id=session_id,
csv_file="holdout_test.csv",
target_column="actual_outcome",
sample_size=1000
)
print(f"""
π― Model Performance:
Accuracy: {results['accuracy_metrics']['accuracy']*100:.2f}%
Avg Confidence: {results['accuracy_metrics']['average_confidence']*100:.2f}%
Correct Predictions: {results['accuracy_metrics']['correct_predictions']}
Total Tested: {results['accuracy_metrics']['total_predictions']}
""")
# Find similar records using neural embeddings
similar = client.similarity_search(session_id, {
"description": "suspicious late night transaction",
"amount": 2000
}, k=10)
print("Similar transactions:")
for record in similar['results']:
print(f"Distance: {record['distance']:.3f} - {record['record']}")
# Get neural embeddings for any record
embedding = client.encode_records(session_id, {
"text": "customer complaint about billing",
"category": "support",
"priority": "high"
})
print(f"Embedding dimension: {len(embedding['embedding'])}")
# Embedding dimension: 512 (rich 512-dimensional representation!)
# Get detailed training metrics
metrics = client.get_training_metrics(session_id)
training_info = metrics['training_metrics']['training_info']
print(f"Training epochs: {len(training_info)}")
# Each epoch contains:
# - Training loss
# - Validation loss
# - Accuracy metrics
# - Learning rate
# - Timestamps
# See what models are available
models = client.get_session_models(session_id)
print(f"""
π¦ Available Models:
Embedding Space: {'β
' if models['summary']['training_complete'] else 'β'}
Single Predictor: {'β
' if models['summary']['prediction_ready'] else 'β'}
Similarity Search: {'β
' if models['summary']['similarity_search_ready'] else 'β'}
Visualizations: {'β
' if models['summary']['visualization_ready'] else 'β'}
""")
Method | Purpose | Returns |
---|---|---|
upload_file_and_create_session() |
Upload CSV & start training | SessionInfo |
train_single_predictor() |
Add predictor to session | Training confirmation |
make_prediction() |
Single record prediction | Prediction probabilities |
predict_records() |
Batch predictions | Batch results |
test_csv_predictions() |
CSV testing with accuracy | Performance metrics |
run_comprehensive_test() |
Full model validation | Complete test report |
Method | Purpose | Returns |
---|---|---|
wait_for_session_completion() |
Monitor training progress | Final session state |
get_training_metrics() |
Training performance data | Loss curves, metrics |
get_session_models() |
Available model inventory | Model status & metadata |
similarity_search() |
Find similar records | Nearest neighbors |
encode_records() |
Get neural embeddings | Vector representations |
# Use batch predictions for better throughput
batch_results = client.predict_records(session_id, records_list)
# 10x faster than individual predictions!
# Adjust training parameters for your data size
client.train_single_predictor(
session_id=session_id,
target_column="target",
target_column_type="set",
epochs=100, # More epochs for complex patterns
batch_size=512, # Larger batches for big datasets
learning_rate=0.001 # Lower LR for stable training
)
# Your CSV just needs:
# β
Clean column names (no spaces/special chars work best)
# β
Target column for prediction
# β
Mix of categorical and numerical features
# β
At least 100+ rows (more = better accuracy)
# The system handles:
# β
Missing values
# β
Mixed data types
# β
Categorical encoding
# β
Feature scaling
# β
Train/validation splits
# Check session status anytime
status = client.get_session_status(session_id)
print(f"Status: {status.status}")
for job_id, job in status.jobs.items():
print(f"Job {job_id}: {job['status']} ({job.get('progress', 0)*100:.1f}%)")
# Monitor training in real-time
import time
while True:
status = client.get_session_status(session_id)
if status.status == 'done':
break
print(f"Training... {status.status}")
time.sleep(10)
"We replaced 6 months of ML engineering with 30 minutes of CSV upload. Our fraud detection went from 87% to 99.8% accuracy."
β FinTech Startup
"The similarity search found patterns in our customer data that our data scientists missed. Revenue up 23%."
β E-commerce Platform
"Production-ready ML models without hiring a single ML engineer and earned us $529,000 of extra revenue in 6 months. This is the future."
β Retail Analytics
- Upload your CSV - Any tabular data works
- Specify your target - What do you want to predict?
- Wait for training - Usually 5-30 minutes depending on data size
- Start predicting - Get production-ready API endpoints
# It's literally this simple:
client = FeatrixSphereClient("http://your-server.com")
session = client.upload_file_and_create_session("your_data.csv")
client.train_single_predictor(session.session_id, "target_column", "set")
result = client.make_prediction(session.session_id, your_record)
print(f"Prediction: {result['prediction']}")
Transform your data into AI. No PhD required. π
We have more info up at www.featrix.ai
Drop us a note at [email protected]