Open
Description
ArrayPartition
is a useful structure to concatenate arrays of different types. The type is defined in SciML/RecursiveArrayTools.jl
ArrayPartition
s are also used in many places in SciML
ecosystem, but also in other places like Manopt.jl
.
It appears, though, that if ArrayPartition
references two containers, one of eltype
is Float64
and another one is Int64
, the gradient
from ForwardDiff
fails.
MWE is:
julia> using ForwardDiff, RecursiveArrayTools
julia> v = [ 0.0, 1 ]
2-element Vector{Float64}:
0.0
1.0
julia> f(v) = sum(v)
f (generic function with 1 method)
julia> ForwardDiff.gradient(f, [ 0.0, 1 ])
2-element Vector{Float64}:
1.0
1.0
julia> ForwardDiff.gradient(f, ArrayPartition([ 0.0 ], [ 1 ]))
ERROR: MethodError: no method matching ForwardDiff.Dual{ForwardDiff.Tag{typeof(f), Float64}, Float64, 2}(::Int64, ::ForwardDiff.Partials{2, Float64})
Closest candidates are:
ForwardDiff.Dual{T, V, N}(::Number) where {T, V, N}
@ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/dual.jl:78
ForwardDiff.Dual{T, V, N}(::Any) where {T, V, N}
@ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/dual.jl:77
ForwardDiff.Dual{T, V, N}(::V, ::ForwardDiff.Partials{N, V}) where {T, V, N}
@ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/dual.jl:17
Stacktrace:
[1] _broadcast_getindex_evalf
@ ./broadcast.jl:709 [inlined]
[2] _broadcast_getindex
@ ./broadcast.jl:682 [inlined]
[3] getindex
@ ./broadcast.jl:636 [inlined]
[4] macro expansion
@ ./broadcast.jl:1004 [inlined]
[5] macro expansion
@ ./simdloop.jl:77 [inlined]
[6] copyto!
@ ./broadcast.jl:1003 [inlined]
[7] copyto!
@ ./broadcast.jl:956 [inlined]
[8] materialize!
@ ./broadcast.jl:914 [inlined]
[9] materialize!
@ ./broadcast.jl:911 [inlined]
[10] seed!(duals::ArrayPartition{…}, x::ArrayPartition{…}, seeds::Tuple{…})
@ ForwardDiff ~/.julia/packages/ForwardDiff/PcZ48/src/apiutils.jl:52
[11] vector_mode_dual_eval!
@ ~/.julia/packages/ForwardDiff/PcZ48/src/apiutils.jl:23 [inlined]
Metadata
Metadata
Assignees
Labels
No labels