Skip to content

This repository is a comprehensive guide to Machine Learning algorithms, Python OOP, data preprocessing, and visualization using Pandas, NumPy, Seaborn, Scikit-learn, and more. It includes hands-on Jupyter notebooks, modular Python scripts, and a structured ML pipeline for training and evaluating models. πŸš€

Notifications You must be signed in to change notification settings

MDalamin5/Data-Science-Machine-Learning-Basics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Comprehensive Guide to Machine Learning & Python OOP

Overview

This repository serves as a comprehensive resource for understanding Machine Learning algorithms, Python Object-Oriented Programming (OOP), data preprocessing, and visualization techniques using industry-standard tools.

Topics Covered

πŸ”Ή Machine Learning Algorithms

βœ” Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, SVM, KNN
βœ” Unsupervised Learning: K-Means Clustering, PCA, DBSCAN
βœ” Ensemble Methods: Random Forest, Gradient βœ” Deep Learning (Basic): Neural Networks, CNN, RNN (Intro)

πŸ”Ή Data Preprocessing Techniques

βœ” Handling Missing Values (Mean/Mode Imputation, Interpolation)
βœ” Feature Scaling: Min-Max Scaling, Standardization
βœ” Categorical Encoding: One-Hot Encoding, Label Encoding
βœ” Feature Selection: Correlation Analysis, Recursive Feature Elimination (RFE)

πŸ”Ή Visualization Techniques

βœ” Seaborn & Matplotlib: Histograms, Pair Plots, Heatmaps
βœ” Pandas Profiling: Automated EDA
βœ” Plotly & Interactive Visuals: Scatter Plots, Line Graphs, 3D Plots

πŸ”Ή Python OOP in Machine Learning

βœ” DataPreprocessor Class (Handles missing values, encoding, scaling)
βœ” ModelTrainer Class (Fits and evaluates ML models)
βœ” Visualizer Class (Generates charts & plots for analysis)
βœ” Pipeline Implementation (Combining preprocessing, training, and evaluation)

Installation

To set up the environment, install dependencies with:

pip install -r requirements.txt

Future Enhancements

πŸš€ Implement Deep Learning models for advanced tasks
πŸš€ Add more real-world datasets for hands-on learning
πŸš€ Expand visualization techniques with interactive tools

About

This repository is a comprehensive guide to Machine Learning algorithms, Python OOP, data preprocessing, and visualization using Pandas, NumPy, Seaborn, Scikit-learn, and more. It includes hands-on Jupyter notebooks, modular Python scripts, and a structured ML pipeline for training and evaluating models. πŸš€

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published