Skip to content

Soumilgit/Datathon_Team-DataP1ac3X.c0m

Repository files navigation

Bank Customer Churn Predictor

Architecture

Screenshot 2025-07-07 221306

Description + stats

  • Bank customer churn prediction application utilizing:
Name of model Accuracy
Decision Tree 79.13%
K-Nearest Neighbors (KNN) 82.00%
Naive Bayes 82.25%
Random Forest Classifier 83.75%
Support Vector Machine (SVM) 84.13%
XGBoost Classifier 84.25%
XGBoost + SMOTE Classifier 83.87%
Voting Classifier 83.63%
Mistral Saba 24B LLM [OpenAI]
  • It ingests 4000 entries to predict churn risk with visual insights, AI-generated explanations and emails.

Tech Stack

Purpose Technologies
Core Tech Python scikit-learn OpenAI
Frontend & Framework HTML CSS JavaScript Streamlit
Backend + DB Supabase EmailJS
Other Libraries NumPy Pandas SciPy Plotly

Database + authentication

DB_Backend_Demo.mp4

Quick Start

  1. Clone repo
  2. pip install -r requirements.txt
    
  3. Store below in a secrets.toml file under a .streamlit folder :
GROQ_API_KEY = ""
SUPABASE_URL = ""
SUPABASE_SERVICE_ROLE_KEY= ""
EMAILJS_PUBLIC_KEY= ""
EMAILJS_TEMPLATE_ID= ""
EMAILJS_SERVICE_ID= ""
  1. streamlit run main.py
    

Research references + custom dataset badge-links

License

This project is licensed under the MIT License.