Skip to content

Pytorch converted model returns .GGML_ASSERT: ggml-cuda.cu:6115: false #4017

Closed
@rvandernoort

Description

@rvandernoort

Prerequisites

Please answer the following questions for yourself before submitting an issue.

Expected Behavior

Please provide a detailed written description of what you were trying to do, and what you expected llama.cpp to do.

Hi just started working with llama.cpp and I stumbled on this issue. Maybe its my side but I'm not really getting it working. I want to use the full 32 bit GGUF model converted from a pytorch model if possible without any more quantization. Can you help me or is this a bug? If any more information is required, let me know

  1. Convert model to 32 bit GGUF with python3 convert.py ./models/tinyllama-1.1b-chat-v0.3
  2. Run this model using llama.cpp docker image

Current Behavior

Please provide a detailed written description of what llama.cpp did, instead.

  1. Convert model to 32 bit GGUF with python3 convert.py ./models/tinyllama-1.1b-chat-v0.3 (succeeds)
  2. Run this model using llama.cpp docker image (fails)

while other bit level does work:

  1. Concert model to 16 bit GGUF with python3 convert.py ./models/tinyllama-1.1b-chat-v0.3 --outtype f16 (succeeds)
  2. Run this model using llama.cpp docker image (succeeds)

Environment and Context

Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.

  • Physical (or virtual) hardware you are using, e.g. for Linux:

$ lscpu

Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:         48 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  24
  On-line CPU(s) list:   0-23
Vendor ID:               AuthenticAMD
  Model name:            AMD Ryzen 9 7900X 12-Core Processor
    CPU family:          25
    Model:               97
    Thread(s) per core:  2
    Core(s) per socket:  12
    Socket(s):           1
    Stepping:            2
    Frequency boost:     enabled
    CPU max MHz:         5732,7139
    CPU min MHz:         3000,0000
    BogoMIPS:            9381.89
    Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc
                          rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f
                         16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr
                         _llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdsee
                         d adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx51
                         2_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold av
                         ic v_vmsave_vmload vgif x2avic v_spec_ctrl avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overfl
                         ow_recov succor smca fsrm flush_l1d
Virtualization features: 
  Virtualization:        AMD-V
Caches (sum of all):     
  L1d:                   384 KiB (12 instances)
  L1i:                   384 KiB (12 instances)
  L2:                    12 MiB (12 instances)
  L3:                    64 MiB (2 instances)
NUMA:                    
  NUMA node(s):          1
  NUMA node0 CPU(s):     0-23

NVIDIA 4090
  • Operating System, e.g. for Linux:

$ uname -a

Linux GreenServer 6.2.0-34-generic #34~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Sep  7 13:12:03 UTC 2 x86_64 x86_64 x86_64 GNU/Linux
  • SDK version, e.g. for Linux:
$ python3 --version
Python 3.10.12
$ make --version
GNU Make 4.3
$ g++ --version
g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Contaierfile: 
FROM ghcr.io/ggerganov/llama.cpp:full-cuda
ENTRYPOINT ['./main']

Docker compose file:
services:
    llama.cpp:
        image: llama.cpp
        container_name: llama.cpp-gpu
        build:
            context: '${PWD}/'
            dockerfile: '${PWD}/Containerfile.orig'
        volumes:
            - '${PWD}/models:/models'
        command: -m /models/TinyLLama/original/ggml-model-f32.gguf -p "Building a website can be done in 10 simple steps:" -n 1024 --seed 12345678 -t 2 --n-gpu-layers 99
        deploy:
            resources:
                reservations:
                    devices:
                        - driver: nvidia
                          count: 1
                          capabilities: [gpu]

Failure Information (for bugs)

Please help provide information about the failure / bug.

.GGML_ASSERT: ggml-cuda.cu:6115: false

Its unclear for me what this bug means.

Steps to Reproduce

Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.

  1. download pytorch_model.bin from https://huggingface.co/PY007/TinyLlama-1.1B-Chat-v0.3 in ./models/tinyllama-1.1b-chat-v0.3
  2. python3 convert.py ./models/tinyllama-1.1b-chat-v0.3
  3. Run docker compose up

Failure Logs

Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.

Log of 32 bit container

[+] Running 1/0
 ✔ Container llama.cpp-gpu  Created                                                                                                                                               0.0s 
Attaching to llama.cpp-gpu
llama.cpp-gpu  | Log start
llama.cpp-gpu  | main: build = 0 (unknown)
llama.cpp-gpu  | main: built with cc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 for x86_64-linux-gnu
llama.cpp-gpu  | main: seed  = 12345678
llama.cpp-gpu  | ggml_init_cublas: found 1 CUDA devices:
llama.cpp-gpu  |   Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9
llama.cpp-gpu  | llama_model_loader: loaded meta data with 20 key-value pairs and 201 tensors from /models/TinyLLama/original/TinyLlama-1.1B-Chat-v0.3/ggml-model-f32.gguf (version unknown)
llama.cpp-gpu  | llama_model_loader: - tensor    0:                token_embd.weight f32      [  2048, 32003,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    1:              blk.0.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    2:              blk.0.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    3:              blk.0.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    4:         blk.0.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    6:              blk.0.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    7:            blk.0.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   10:              blk.1.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   11:              blk.1.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   12:              blk.1.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   13:         blk.1.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   15:              blk.1.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   16:            blk.1.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   19:              blk.2.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   20:              blk.2.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   21:              blk.2.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   22:         blk.2.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   24:              blk.2.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   25:            blk.2.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   28:              blk.3.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   29:              blk.3.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   30:              blk.3.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   31:         blk.3.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   33:              blk.3.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   34:            blk.3.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   37:              blk.4.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   38:              blk.4.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   39:              blk.4.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   40:         blk.4.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   42:              blk.4.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   43:            blk.4.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   46:              blk.5.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   47:              blk.5.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   48:              blk.5.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   49:         blk.5.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   51:              blk.5.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   52:            blk.5.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   55:              blk.6.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   56:              blk.6.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   57:              blk.6.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   58:         blk.6.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   60:              blk.6.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   61:            blk.6.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   64:              blk.7.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   65:              blk.7.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   66:              blk.7.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   67:         blk.7.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   69:              blk.7.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   70:            blk.7.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   73:              blk.8.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   74:              blk.8.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   75:              blk.8.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   76:         blk.8.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   78:              blk.8.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   79:            blk.8.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   82:              blk.9.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   83:              blk.9.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   84:              blk.9.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   85:         blk.9.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   87:              blk.9.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   88:            blk.9.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   91:             blk.10.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   92:             blk.10.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   93:             blk.10.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   94:        blk.10.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   96:             blk.10.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   97:           blk.10.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  100:             blk.11.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  101:             blk.11.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  102:             blk.11.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  103:        blk.11.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  105:             blk.11.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  106:           blk.11.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  109:             blk.12.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  110:             blk.12.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  111:             blk.12.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  112:        blk.12.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  114:             blk.12.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  115:           blk.12.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  118:             blk.13.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  119:             blk.13.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  120:             blk.13.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  121:        blk.13.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  123:             blk.13.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  124:           blk.13.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  127:             blk.14.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  128:             blk.14.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  129:             blk.14.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  130:        blk.14.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  132:             blk.14.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  133:           blk.14.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  136:             blk.15.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  137:             blk.15.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  138:             blk.15.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  139:        blk.15.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  141:             blk.15.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  142:           blk.15.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  145:             blk.16.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  146:             blk.16.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  147:             blk.16.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  148:        blk.16.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  150:             blk.16.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  151:           blk.16.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  154:             blk.17.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  155:             blk.17.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  156:             blk.17.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  157:        blk.17.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  159:             blk.17.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  160:           blk.17.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  163:             blk.18.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  164:             blk.18.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  165:             blk.18.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  166:        blk.18.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  168:             blk.18.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  169:           blk.18.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  172:             blk.19.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  173:             blk.19.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  174:             blk.19.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  175:        blk.19.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  177:             blk.19.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  178:           blk.19.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  181:             blk.20.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  182:             blk.20.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  183:             blk.20.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  184:        blk.20.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  186:             blk.20.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  187:           blk.20.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  190:             blk.21.attn_q.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  191:             blk.21.attn_k.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  192:             blk.21.attn_v.weight f32      [  2048,   256,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  193:        blk.21.attn_output.weight f32      [  2048,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  195:             blk.21.ffn_up.weight f32      [  2048,  5632,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  196:           blk.21.ffn_down.weight f32      [  5632,  2048,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  199:               output_norm.weight f32      [  2048,     1,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - tensor  200:                    output.weight f32      [  2048, 32003,     1,     1 ]
llama.cpp-gpu  | llama_model_loader: - kv   0:                       general.architecture str     
llama.cpp-gpu  | llama_model_loader: - kv   1:                               general.name str     
llama.cpp-gpu  | llama_model_loader: - kv   2:                       llama.context_length u32     
llama.cpp-gpu  | llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama.cpp-gpu  | llama_model_loader: - kv   4:                          llama.block_count u32     
llama.cpp-gpu  | llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama.cpp-gpu  | llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama.cpp-gpu  | llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama.cpp-gpu  | llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama.cpp-gpu  | llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama.cpp-gpu  | llama_model_loader: - kv  10:                       llama.rope.freq_base f32     
llama.cpp-gpu  | llama_model_loader: - kv  11:                          general.file_type u32     
llama.cpp-gpu  | llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama.cpp-gpu  | llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama.cpp-gpu  | llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama.cpp-gpu  | llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama.cpp-gpu  | llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32     
llama.cpp-gpu  | llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32     
llama.cpp-gpu  | llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32     
llama.cpp-gpu  | llama_model_loader: - kv  19:            tokenizer.ggml.padding_token_id u32     
llama.cpp-gpu  | llama_model_loader: - type  f32:  201 tensors
llama.cpp-gpu  | llm_load_print_meta: format           = unknown
llama.cpp-gpu  | llm_load_print_meta: arch             = llama
llama.cpp-gpu  | llm_load_print_meta: vocab type       = SPM
llama.cpp-gpu  | llm_load_print_meta: n_vocab          = 32003
llama.cpp-gpu  | llm_load_print_meta: n_merges         = 0
llama.cpp-gpu  | llm_load_print_meta: n_ctx_train      = 2048
llama.cpp-gpu  | llm_load_print_meta: n_embd           = 2048
llama.cpp-gpu  | llm_load_print_meta: n_head           = 32
llama.cpp-gpu  | llm_load_print_meta: n_head_kv        = 4
llama.cpp-gpu  | llm_load_print_meta: n_layer          = 22
llama.cpp-gpu  | llm_load_print_meta: n_rot            = 64
llama.cpp-gpu  | llm_load_print_meta: n_gqa            = 8
llama.cpp-gpu  | llm_load_print_meta: f_norm_eps       = 0.0e+00
llama.cpp-gpu  | llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llama.cpp-gpu  | llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llama.cpp-gpu  | llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llama.cpp-gpu  | llm_load_print_meta: n_ff             = 5632
llama.cpp-gpu  | llm_load_print_meta: freq_base_train  = 10000.0
llama.cpp-gpu  | llm_load_print_meta: freq_scale_train = 1
llama.cpp-gpu  | llm_load_print_meta: model type       = ?B
llama.cpp-gpu  | llm_load_print_meta: model ftype      = all F32
llama.cpp-gpu  | llm_load_print_meta: model params     = 1.10 B
llama.cpp-gpu  | llm_load_print_meta: model size       = 4.10 GiB (32.00 BPW) 
llama.cpp-gpu  | llm_load_print_meta: general.name   = models
llama.cpp-gpu  | llm_load_print_meta: BOS token = 1 '<s>'
llama.cpp-gpu  | llm_load_print_meta: EOS token = 2 '</s>'
llama.cpp-gpu  | llm_load_print_meta: UNK token = 0 '<unk>'
llama.cpp-gpu  | llm_load_print_meta: PAD token = 32000 '[PAD]'
llama.cpp-gpu  | llm_load_print_meta: LF token  = 13 '<0x0A>'
llama.cpp-gpu  | llm_load_tensors: ggml ctx size =    0.07 MB
llama.cpp-gpu  | llm_load_tensors: using CUDA for GPU acceleration
llama.cpp-gpu  | llm_load_tensors: mem required  =  250.09 MB
llama.cpp-gpu  | llm_load_tensors: offloading 22 repeating layers to GPU
llama.cpp-gpu  | llm_load_tensors: offloading non-repeating layers to GPU
llama.cpp-gpu  | llm_load_tensors: offloaded 25/25 layers to GPU
llama.cpp-gpu  | llm_load_tensors: VRAM used: 3946.38 MB
llama.cpp-gpu  | .GGML_ASSERT: ggml-cuda.cu:6115: false
llama.cpp-gpu exited with code 139

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions