Skip to content

vulkan: use smaller combined allocations to avoid fragmentation #11551

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 1 addition & 13 deletions ggml/src/ggml-alloc.c
Original file line number Diff line number Diff line change
Expand Up @@ -989,19 +989,7 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
}

if (this_size > max_size) {
GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
__func__, t->name,
ggml_backend_buft_name(buft),
this_size, max_size);
for (size_t i = 0; i < n_buffers; i++) {
ggml_backend_buffer_free(buffers[i]);
}
free(buffers);
return NULL;
}

if ((cur_buf_size + this_size) > max_size) {
if (cur_buf_size > 0 && (cur_buf_size + this_size) > max_size) {
// allocate tensors in the current buffer
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
return NULL;
Expand Down
19 changes: 17 additions & 2 deletions ggml/src/ggml-vulkan/ggml-vulkan.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,7 @@ struct vk_device_struct {
vk::PhysicalDeviceProperties properties;
std::string name;
uint64_t max_memory_allocation_size;
uint64_t suballocation_block_size;
bool fp16;
bool pipeline_robustness;
vk::Device device;
Expand Down Expand Up @@ -2269,6 +2270,7 @@ static vk_device ggml_vk_get_device(size_t idx) {

device->physical_device.getProperties2(&props2);
device->properties = props2.properties;
device->vendor_id = device->properties.vendorID;

const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");

Expand All @@ -2280,7 +2282,20 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->max_memory_allocation_size = props3.maxMemoryAllocationSize;
}

device->vendor_id = device->properties.vendorID;
const char* GGML_VK_SUBALLOCATION_BLOCK_SIZE = getenv("GGML_VK_SUBALLOCATION_BLOCK_SIZE");

if (GGML_VK_SUBALLOCATION_BLOCK_SIZE != nullptr) {
device->suballocation_block_size = std::stoul(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
#if defined(_WIN32)
} else if (device->vendor_id == VK_VENDOR_ID_NVIDIA) {
// Limit batching of allocations to 1GB by default to avoid fragmentation issues
device->suballocation_block_size = 1024*1024*1024;
#endif
} else {
device->suballocation_block_size = device->max_memory_allocation_size;
}
device->suballocation_block_size = std::min(device->suballocation_block_size, device->max_memory_allocation_size);

device->subgroup_size = subgroup_props.subgroupSize;
device->uma = device->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
if (sm_builtins) {
Expand Down Expand Up @@ -7561,7 +7576,7 @@ static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type

static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->max_memory_allocation_size;
return ctx->device->suballocation_block_size;
}

static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
Expand Down
Loading