Skip to content

Fixes EMAModel "from_pretrained" method #9779

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Nov 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/diffusers/training_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,7 @@ def __init__(

@classmethod
def from_pretrained(cls, path, model_cls, foreach=False) -> "EMAModel":
_, ema_kwargs = model_cls.load_config(path, return_unused_kwargs=True)
_, ema_kwargs = model_cls.from_config(path, return_unused_kwargs=True)
model = model_cls.from_pretrained(path)

ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config, foreach=foreach)
Expand Down
38 changes: 38 additions & 0 deletions tests/others/test_ema.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,25 @@ def simulate_backprop(self, unet):
unet.load_state_dict(updated_state_dict)
return unet

def test_from_pretrained(self):
# Save the model parameters to a temporary directory
unet, ema_unet = self.get_models()
with tempfile.TemporaryDirectory() as tmpdir:
ema_unet.save_pretrained(tmpdir)

# Load the EMA model from the saved directory
loaded_ema_unet = EMAModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel, foreach=False)

# Check that the shadow parameters of the loaded model match the original EMA model
for original_param, loaded_param in zip(ema_unet.shadow_params, loaded_ema_unet.shadow_params):
assert torch.allclose(original_param, loaded_param, atol=1e-4)

# Verify that the optimization step is also preserved
assert loaded_ema_unet.optimization_step == ema_unet.optimization_step

# Check the decay value
assert loaded_ema_unet.decay == ema_unet.decay

def test_optimization_steps_updated(self):
unet, ema_unet = self.get_models()
# Take the first (hypothetical) EMA step.
Expand Down Expand Up @@ -194,6 +213,25 @@ def simulate_backprop(self, unet):
unet.load_state_dict(updated_state_dict)
return unet

def test_from_pretrained(self):
# Save the model parameters to a temporary directory
unet, ema_unet = self.get_models()
with tempfile.TemporaryDirectory() as tmpdir:
ema_unet.save_pretrained(tmpdir)

# Load the EMA model from the saved directory
loaded_ema_unet = EMAModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel, foreach=True)

# Check that the shadow parameters of the loaded model match the original EMA model
for original_param, loaded_param in zip(ema_unet.shadow_params, loaded_ema_unet.shadow_params):
assert torch.allclose(original_param, loaded_param, atol=1e-4)

# Verify that the optimization step is also preserved
assert loaded_ema_unet.optimization_step == ema_unet.optimization_step

# Check the decay value
assert loaded_ema_unet.decay == ema_unet.decay

def test_optimization_steps_updated(self):
unet, ema_unet = self.get_models()
# Take the first (hypothetical) EMA step.
Expand Down
Loading