Closed
Description
What happened?
It seems like when I used Qwen3-30B-A3B with -fmoe
, an "illegal memory access" always occur after a short period of time. Without -fmoe
, it works fine.
I'm not sure if this is GPU-related.
Name and Version
version: 3673 (4084ca7)
built with gcc-14 (Homebrew GCC 14.2.0_1) 14.2.0 for x86_64-pc-linux-gnu
What operating system are you seeing the problem on?
Linux
Relevant log output
INFO [ main] build info | tid="133287468544000" timestamp=1746695902 build=3673 commit="4084ca73"
INFO [ main] system info | tid="133287468544000" timestamp=1746695902 n_threads=2 n_threads_batch=-1 total_threads=4 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: loaded meta data with 35 key-value pairs and 579 tensors from /root/Qwen3-30B-A3B-UD-Q4_K_XL.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3moe
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-30B-A3B
llama_model_loader: - kv 3: general.basename str = Qwen3-30B-A3B
llama_model_loader: - kv 4: general.quantized_by str = Unsloth
llama_model_loader: - kv 5: general.size_label str = 30B-A3B
llama_model_loader: - kv 6: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 7: qwen3moe.block_count u32 = 48
llama_model_loader: - kv 8: qwen3moe.context_length u32 = 40960
llama_model_loader: - kv 9: qwen3moe.embedding_length u32 = 2048
llama_model_loader: - kv 10: qwen3moe.feed_forward_length u32 = 6144
llama_model_loader: - kv 11: qwen3moe.attention.head_count u32 = 32
llama_model_loader: - kv 12: qwen3moe.attention.head_count_kv u32 = 4
llama_model_loader: - kv 13: qwen3moe.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 14: qwen3moe.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 15: qwen3moe.expert_used_count u32 = 8
llama_model_loader: - kv 16: qwen3moe.attention.key_length u32 = 128
llama_model_loader: - kv 17: qwen3moe.attention.value_length u32 = 128
llama_model_loader: - kv 18: qwen3moe.expert_count u32 = 128
llama_model_loader: - kv 19: qwen3moe.expert_feed_forward_length u32 = 768
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 25: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 26: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 27: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 28: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 29: general.quantization_version u32 = 2
llama_model_loader: - kv 30: general.file_type u32 = 15
llama_model_loader: - kv 31: quantize.imatrix.file str = Qwen3-30B-A3B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 32: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-30B-A3B.txt
llama_model_loader: - kv 33: quantize.imatrix.entries_count i32 = 384
llama_model_loader: - kv 34: quantize.imatrix.chunks_count i32 = 32
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 290 tensors
llama_model_loader: - type q5_K: 37 tensors
llama_model_loader: - type q6_K: 11 tensors
llm_load_vocab: special tokens cache size = 26
llm_load_vocab: token to piece cache size = 0.9311 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen3moe
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 151936
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 40960
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_layer = 48
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 4
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_swa_pattern = 1
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: n_embd_k_gqa = 512
llm_load_print_meta: n_embd_v_gqa = 512
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 6144
llm_load_print_meta: n_expert = 128
llm_load_print_meta: n_expert_used = 8
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 40960
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 30.532 B
llm_load_print_meta: model size = 16.493 GiB (4.640 BPW)
llm_load_print_meta: repeating layers = 16.093 GiB (4.622 BPW, 29.910 B parameters)
llm_load_print_meta: general.name = Qwen3-30B-A3B
llm_load_print_meta: BOS token = 11 ','
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151654 '<|vision_pad|>'
llm_load_print_meta: LF token = 148848 'ÄĬ'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: max token length = 256
llm_load_print_meta: n_ff_exp = 768
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: Tesla T4, compute capability 7.5, VMM: yes
Device 1: Tesla T4, compute capability 7.5, VMM: yes
llm_load_tensors: ggml ctx size = 0.76 MiB
llm_load_tensors: offloading 48 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 49/49 layers to GPU
llm_load_tensors: CPU buffer size = 166.92 MiB
llm_load_tensors: CUDA0 buffer size = 8509.23 MiB
llm_load_tensors: CUDA1 buffer size = 8213.14 MiB
....................................................................................................
llama_new_context_with_model: n_ctx = 32768
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: mla_attn = 0
llama_new_context_with_model: attn_max_b = 0
llama_new_context_with_model: fused_moe = 1
llama_new_context_with_model: ser = -1, 0
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 1600.00 MiB
llama_kv_cache_init: CUDA1 KV buffer size = 1472.00 MiB
llama_new_context_with_model: KV self size = 3072.00 MiB, K (f16): 1536.00 MiB, V (f16): 1536.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 1.16 MiB
llama_new_context_with_model: pipeline parallelism enabled (n_copies=4)
llama_new_context_with_model: CUDA0 compute buffer size = 368.01 MiB
llama_new_context_with_model: CUDA1 compute buffer size = 444.77 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 260.02 MiB
llama_new_context_with_model: graph nodes = 1878
llama_new_context_with_model: graph splits = 3
INFO [ init] initializing slots | tid="133287468544000" timestamp=1746695910 n_slots=1
INFO [ init] new slot | tid="133287468544000" timestamp=1746695910 id_slot=0 n_ctx_slot=32768
INFO [ main] model loaded | tid="133287468544000" timestamp=1746695910
INFO [ main] chat template | tid="133287468544000" timestamp=1746695910 chat_example="<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello<|im_end|>\n<|im_start|>assistant\nHi there<|im_end|>\n<|im_start|>user\nHow are you?<|im_end|>\n<|im_start|>assistant\n" built_in=true
INFO [ main] HTTP server listening | tid="133287468544000" timestamp=1746695910 n_threads_http="3" port="8080" hostname="127.0.0.1"
INFO [ update_slots] all slots are idle | tid="133287468544000" timestamp=1746695910
INFO [ launch_slot_with_task] slot is processing task | tid="133287468544000" timestamp=1746695926 id_slot=0 id_task=0
INFO [ update_slots] kv cache rm [p0, end) | tid="133287468544000" timestamp=1746695926 id_slot=0 id_task=0 p0=0
INFO [ print_timings] prompt eval time = 1428.08 ms / 756 tokens ( 1.89 ms per token, 529.38 tokens per second) | tid="133287468544000" timestamp=1746695972 id_slot=0 id_task=0 t_prompt_processing=1428.075 n_prompt_tokens_processed=756 t_token=1.8889880952380953 n_tokens_second=529.383960926422
INFO [ print_timings] generation eval time = 44081.50 ms / 2038 runs ( 21.63 ms per token, 46.23 tokens per second) | tid="133287468544000" timestamp=1746695972 id_slot=0 id_task=0 t_token_generation=44081.501 n_decoded=2038 t_token=21.629784592737977 n_tokens_second=46.23254548432914
INFO [ print_timings] total time = 45509.58 ms | tid="133287468544000" timestamp=1746695972 id_slot=0 id_task=0 t_prompt_processing=1428.075 t_token_generation=44081.501 t_total=45509.575999999994
INFO [ update_slots] slot released | tid="133287468544000" timestamp=1746695972 id_slot=0 id_task=0 n_ctx=32768 n_past=2793 n_system_tokens=0 n_cache_tokens=0 truncated=false
INFO [ update_slots] all slots are idle | tid="133287468544000" timestamp=1746695972
INFO [ log_server_request] request | tid="133286382788608" timestamp=1746695972 remote_addr="127.0.0.1" remote_port=51948 status=200 method="POST" path="/chat/completions" params={}
INFO [ update_slots] all slots are idle | tid="133287468544000" timestamp=1746695972
INFO [ launch_slot_with_task] slot is processing task | tid="133287468544000" timestamp=1746695989 id_slot=0 id_task=2040
INFO [ update_slots] kv cache rm [p0, end) | tid="133287468544000" timestamp=1746695989 id_slot=0 id_task=2040 p0=0
INFO [ print_timings] prompt eval time = 2259.97 ms / 1480 tokens ( 1.53 ms per token, 654.88 tokens per second) | tid="133287468544000" timestamp=1746696002 id_slot=0 id_task=2040 t_prompt_processing=2259.965 n_prompt_tokens_processed=1480 t_token=1.5270033783783785 n_tokens_second=654.8773985437828
INFO [ print_timings] generation eval time = 10276.92 ms / 407 runs ( 25.25 ms per token, 39.60 tokens per second) | tid="133287468544000" timestamp=1746696002 id_slot=0 id_task=2040 t_token_generation=10276.922 n_decoded=407 t_token=25.250422604422607 n_tokens_second=39.603297563219805
INFO [ print_timings] total time = 12536.89 ms | tid="133287468544000" timestamp=1746696002 id_slot=0 id_task=2040 t_prompt_processing=2259.965 t_token_generation=10276.922 t_total=12536.887
INFO [ update_slots] slot released | tid="133287468544000" timestamp=1746696002 id_slot=0 id_task=2040 n_ctx=32768 n_past=1886 n_system_tokens=0 n_cache_tokens=0 truncated=false
INFO [ update_slots] all slots are idle | tid="133287468544000" timestamp=1746696002
INFO [ log_server_request] request | tid="133286374395904" timestamp=1746696002 remote_addr="127.0.0.1" remote_port=36728 status=200 method="POST" path="/chat/completions" params={}
INFO [ update_slots] all slots are idle | tid="133287468544000" timestamp=1746696002
INFO [ launch_slot_with_task] slot is processing task | tid="133287468544000" timestamp=1746696077 id_slot=0 id_task=2449
INFO [ update_slots] kv cache rm [p0, end) | tid="133287468544000" timestamp=1746696077 id_slot=0 id_task=2449 p0=0
CUDA error: an illegal memory access was encountered
current device: 1, in function ggml_cuda_up_gate_unary at /kaggle/working/ik_llama.cpp/ggml/src/ggml-cuda.cu:2555
cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)
/kaggle/working/ik_llama.cpp/ggml/src/ggml-cuda.cu:110: CUDA error
Metadata
Metadata
Assignees
Labels
No labels