Skip to content

[mlir][vector] Update tests for collapse 2/n (nfc) #94604

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged

Conversation

banach-space
Copy link
Contributor

@banach-space banach-space commented Jun 6, 2024

The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:

  • vector-transfer-collapse-inner-most-dims.mlir

Changes in this PR:

  1. Renamed @contiguous_inner_most_dim_bounds as
    @contiguous_inner_most_dim_with_subview. This test was introduced
    to make sure that the in_bounds attribute is correctly preserved,
    but that's already verified by some earlier tests. The updated name
    highlights the differentiating factor of this test when compared to
    the other tests currently present in the file, i.e. the presence of
    memref.subview in the input IR.

  2. Renamed @contiguous_inner_most_dim_out_of_bounds_2d as
    @negative_non_unit_inner_vec_dim. While this test does contain an
    out-of-bounds access, the actual reason for the tested pattern to
    fail is the fact that the inner dim in the output vector is not "1".
    A complimentary test was added to verify that the pattern also fails
    when the source memref has non-unit trailing dim
    (@negative_non_unit_inner_memref_dim).

  3. Renamed @contiguous_inner_most_dim as
    @contiguous_inner_most_dim_non_zero_idxs - this test verifies that
    the pattern works in the presence of non-zero idxs.

  4. Added more tests for scalable vectors - this should cover all cases
    for vector.transfer_read.

NOTE: This PR is limited to tests for vector.transfer_read.

Follow-up for: #94490

@llvmbot
Copy link
Member

llvmbot commented Jun 6, 2024

@llvm/pr-subscribers-mlir-vector

@llvm/pr-subscribers-mlir

Author: Andrzej Warzyński (banach-space)

Changes
  • [mlir][vector] Update tests for collapse 1/n (nfc)
  • [mlir][vector] Update tests for collapse 2/n (nfc)

Full diff: https://github.com/llvm/llvm-project/pull/94604.diff

1 Files Affected:

  • (modified) mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir (+144-41)
diff --git a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
index b4cb640108bae..9fb648b39ffc5 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
@@ -1,12 +1,17 @@
 // RUN: mlir-opt %s -test-vector-transfer-collapse-inner-most-dims -split-input-file | FileCheck %s
 
-func.func @contiguous_inner_most_view(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
+//-----------------------------------------------------------------------------
+// 1. vector.transfer_read
+//-----------------------------------------------------------------------------
+
+func.func @contiguous_inner_most(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x1xf32>
   return %0 : vector<1x8x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_view(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
+
+//      CHECK: func @contiguous_inner_most(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 // CHECK-SAME:    memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>> to memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>
 //      CHECK:   %[[VEC:.+]] = vector.transfer_read %[[SRC_0]]
@@ -14,15 +19,61 @@ func.func @contiguous_inner_most_view(%in: memref<1x1x8x1xf32, strided<[3072, 8,
 //      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
 //      CHECK:   return %[[RESULT]]
 
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_scalable_inner_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x[8]x1xf32>{
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x[8]x1xf32>
+  return %0 : vector<1x[8]x1xf32>
+}
+
+//      CHECK: func @contiguous_inner_most_scalable_inner_dim(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
+//      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK-SAME:    memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>> to memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>
+//      CHECK:   %[[VEC:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK-SAME:    memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>, vector<1x[8]xf32>
+//      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
+//      CHECK:   return %[[RESULT]]
+
+// Same as the top example within this split, but the trailing unit dim was
+// replaced with a dyn dim - not supported
+
+func.func @non_unit_trailing_dim(%in: memref<1x1x8x?xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x?xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x1xf32>
+  return %0 : vector<1x8x1xf32>
+}
+
+//  CHECK-LABEL: func @non_unit_trailing_dim
+//    CHECK-NOT: memref.subview
+//    CHECK-NOT: vector.shape_cast
+
+// Same as the top example within this split, but with a scalable unit dim in
+// the output vector - not supported
+
+func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x[1]xf32>{
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x[1]xf32>
+  return %0 : vector<1x8x[1]xf32>
+}
+//  CHECK-LABEL: func @scalable_unit_dim
+//    CHECK-NOT: memref.subview
+//    CHECK-NOT: vector.shape_cast
+
 // -----
 
-func.func @contiguous_outer_dyn_inner_most_view(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
+func.func @contiguous_inner_most_dynamic_outer(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
   %c0 = arith.constant 0 : index
   %pad = arith.constant 0.0 : f32
   %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<8x1xf32>
   return %v : vector<8x1xf32>
 }
-// CHECK: func.func @contiguous_outer_dyn_inner_most_view(
+// CHECK: func.func @contiguous_inner_most_dynamic_outer
 // CHECK-SAME:   %[[IDX0:[a-zA-Z0-9]+]]
 // CHECK-SAME:   %[[IDX1:[a-zA-Z0-9]+]]
 // CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
@@ -38,56 +89,132 @@ func.func @contiguous_outer_dyn_inner_most_view(%a: index, %b: index, %memref: m
 // CHECK:        %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
 // CHECK:        return %[[RESULT]]
 
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<[8]x1xf32> {
+  %c0 = arith.constant 0 : index
+  %pad = arith.constant 0.0 : f32
+  %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<[8]x1xf32>
+  return %v : vector<[8]x1xf32>
+}
+// CHECK-LABEL:  func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim
+// CHECK-SAME:   %[[IDX0:[a-zA-Z0-9]+]]
+// CHECK-SAME:   %[[IDX1:[a-zA-Z0-9]+]]
+// CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
+// CHECK:         %[[VIEW:.+]] = memref.subview %[[SRC]]{{.*}} memref<?x?x8x1xf32> to memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>
+// CHECK:         %[[VEC_READ:.+]] = vector.transfer_read %[[VIEW]]
+// CHECK-SAME:    {in_bounds = [true]}
+// CHECK-SAME:     memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>, vector<[8]xf32>
+// CHECK:         vector.shape_cast %[[VEC_READ]]
+
 // -----
 
-func.func @contiguous_inner_most_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
   %c0 = arith.constant 0 : index
   %f0 = arith.constant 0.0 : f32
   %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
   return %1 : vector<8x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_non_zero_idxs(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 // CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
-//      CHECK:   %[[RESULT]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
+//      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
 //      CHECK:   return %[[RESULT]]
 
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<[8]x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %f0 = arith.constant 0.0 : f32
+  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
+  return %1 : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(
+// CHECK-SAME:    %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<[8]x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//  CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+//       CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<[8]xf32> to vector<[8]x1xf32>
+//       CHECK:   return %[[RESULT]]
+
 // -----
 
-func.func @contiguous_inner_most_dim_bounds(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
   %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<4x1xf32>
   return %1 : vector<4x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_bounds(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_with_subview(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //      CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
 // CHECK-SAME:       {in_bounds = [true]}
 // CHECK-SAME:       vector<4xf32>
 
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_scalable_inner_dim(%A: memref<1000x?xf32>, %i:index, %ii:index, %j:index) -> (vector<[4]x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = memref.subview %A[%i, 0] [40, %j] [1, 1] : memref<1000x?xf32> to memref<40x?xf32, strided<[?, 1], offset: ?>>
+  %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x?xf32, strided<[?, 1], offset: ?>>, vector<[4]x1xf32>
+  return %1 : vector<[4]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_bounds_trailing_dim_dyn_scalable_vec
+//  CHECK-SAME:   %[[SRC:.+]]: memref<1000x?xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
+// CHECK-SAME:       {in_bounds = [true]}
+// CHECK-SAME:       vector<[4]xf32>
+
 // -----
 
-func.func @contiguous_inner_most_dim_bounds_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
+func.func @contiguous_inner_most_dim_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
   %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<4x1x1xf32>
   return %1 : vector<4x1x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_bounds_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //      CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
 // CHECK-SAME:       {in_bounds = [true]}
 // CHECK-SAME:       vector<4xf32>
 
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_2d_scalable_inner_dim(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<[4]x1x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
+  %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<[4]x1x1xf32>
+  return %1 : vector<[4]x1x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_2d_scalable_inner_dim(
+//  CHECK-SAME:   %[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<[4]x1x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//       CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
+//  CHECK-SAME:       {in_bounds = [true]}
+//  CHECK-SAME:       vector<[4]xf32>
+//       CHECK:  vector.shape_cast %[[V]]
+
 // -----
 
-func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) -> vector<4x8xf32> {
+func.func @negative_out_of_bounds(%arg0: memref<1x1xf32>) -> vector<4x8xf32> {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.000000e+00 : f32
   %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<1x1xf32>, vector<4x8xf32>
@@ -95,7 +222,7 @@ func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) ->
 }
 // The inner most unit dim can not be dropped. In this context, we do not
 // generate rank-reduced memref.subview ops.
-//      CHECK: func.func @contiguous_inner_most_dim_out_of_bounds_2d
+//      CHECK: func.func @negative_out_of_bounds
 // CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
 //  CHECK-NOT:   memref.subview
 //      CHECK:   %[[READ:.+]] = vector.transfer_read %[[SRC]]
@@ -103,6 +230,10 @@ func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) ->
 
 // -----
 
+//-----------------------------------------------------------------------------
+// 2. vector.transfer_write
+//-----------------------------------------------------------------------------
+
 func.func @drop_two_inner_most_dim_for_transfer_write(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
   %c0 = arith.constant 0 : index
   vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
@@ -177,21 +308,6 @@ func.func @non_unit_strides(%arg0: memref<512x16x1xf32, strided<[8192, 16, 4], o
 
 // -----
 
-func.func @leading_scalable_dimension_transfer_read(%dest : memref<24x1xf32>) -> vector<[4]x1xf32> {
-  %c0 = arith.constant 0 : index
-  %pad = arith.constant 0.0 : f32
-  %0 = vector.transfer_read %dest[%c0, %c0], %pad {in_bounds = [true, true]} : memref<24x1xf32>, vector<[4]x1xf32>
-  return %0 : vector<[4]x1xf32>
-}
-// CHECK:      func.func @leading_scalable_dimension_transfer_read
-// CHECK-SAME:   %[[DEST:[a-zA-Z0-9]+]]
-// CHECK:        %[[SUBVIEW:.+]] = memref.subview %[[DEST]][0, 0] [24, 1] [1, 1] : memref<24x1xf32> to memref<24xf32, strided<[1]>>
-// CHECK:        %[[READ:.+]] = vector.transfer_read %[[SUBVIEW]]{{.*}} {in_bounds = [true]} : memref<24xf32, strided<[1]>>, vector<[4]xf32>
-// CHECK:        %[[CAST:.+]] = vector.shape_cast %[[READ]] : vector<[4]xf32> to vector<[4]x1xf32>
-// CHECK:        return %[[CAST]]
-
-// -----
-
 // Negative test: [1] (scalable 1) is _not_ a unit dimension.
 func.func @trailing_scalable_one_dim_transfer_read(%dest : memref<24x1xf32>) -> vector<4x[1]xf32> {
   %c0 = arith.constant 0 : index
@@ -217,16 +333,3 @@ func.func @leading_scalable_dimension_transfer_write(%dest : memref<24x1xf32>, %
 // CHECK:        %[[SUBVIEW:.+]] = memref.subview %[[DEST]][0, 0] [24, 1] [1, 1] : memref<24x1xf32> to memref<24xf32, strided<[1]>>
 // CHECK:        %[[CAST:.+]] = vector.shape_cast %[[VEC]] : vector<[4]x1xf32> to vector<[4]xf32>
 // CHECK:        vector.transfer_write %[[CAST]], %[[SUBVIEW]]{{.*}} {in_bounds = [true]} : vector<[4]xf32>, memref<24xf32, strided<[1]>>
-
-// -----
-
-// Negative test: [1] (scalable 1) is _not_ a unit dimension.
-func.func @trailing_scalable_one_dim_transfer_write(%dest : memref<24x1xf32>, %vec: vector<4x[1]xf32>, %index: index) {
-  %c0 = arith.constant 0 : index
-  vector.transfer_write %vec, %dest[%index, %c0] {in_bounds = [true, true]} : vector<4x[1]xf32>,  memref<24x1xf32>
-  return
-}
-// CHECK:      func.func @trailing_scalable_one_dim_transfer_write
-// CHECK-NOT:    vector.shape_cast
-// CHECK:        vector.transfer_write {{.*}} : vector<4x[1]xf32>,  memref<24x1xf32>
-// CHECK-NOT:    vector.shape_cast

@banach-space banach-space changed the title andrzej/update collapse inner 2 [mlir][vector] Update tests for collapse 2/n (nfc) Jun 6, 2024
@banach-space banach-space requested a review from MacDue June 6, 2024 11:12
@MacDue
Copy link
Member

MacDue commented Jun 6, 2024

(CI failing in the same way as #94490)

@banach-space banach-space force-pushed the andrzej/update_collapse_inner_2 branch 4 times, most recently from 09e9e74 to 41fb2e8 Compare June 9, 2024 16:18
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 9, 2024
Restrict `DropInnerMostUnitDimsTransferRead` so that it fails when one
of the indices to be dropped could be != 0, e.g.

```
func.func @negative_example(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
  %f0 = arith.constant 0.0 : f32
  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
  return %1 : vector<8x1xf32>
}
```

This is an edge case that could represent an out-of-bounds access,
though that will depend on the actual value of `%j`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Depends on: llvm#94490, llvm#94604
@banach-space banach-space force-pushed the andrzej/update_collapse_inner_2 branch from 41fb2e8 to f246e3a Compare June 9, 2024 17:03
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 9, 2024
Restrict `DropInnerMostUnitDimsTransferRead` so that it fails when one
of the indices to be dropped could be != 0, e.g.

```
func.func @negative_example(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
  %f0 = arith.constant 0.0 : f32
  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
  return %1 : vector<8x1xf32>
}
```

This is an edge case that could represent an out-of-bounds access,
though that will depend on the actual value of `%j`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Depends on: llvm#94490, llvm#94604
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 9, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, the very first test for `vector.transfer_write` is
complemented with all the possible combinations:
  * scalable (rather than fixed) unit trailing dim,
  * dynamic (rather than static) trailing dim in the source memref.

To this end, the following tests:
  * `@leading_scalable_dimension_transfer_write`
    `@trailing_scalable_one_dim_transfer_write`

are replaced with:
  * `@drop_two_inner_most_dim_scalable_inner_dim` and
    `@negative_scalable_unit_dim`,

respectively. In addition:
  * "_for_transfer_write" is removed from function names (to reduce
    noise).

This is a follow-up for: llvm#94490, llvm#94604

NOTE: This PR is limited to tests for `vector.transfer_write`.
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

Changes in this PR:

1. Renamed `@contiguous_inner_most_dim_bounds` as
   `@contiguous_inner_most_dim_with_subview`. This test was introduced
   to make sure that the `in_bounds` attribute is correctly preserved,
   but that's already verified by some earlier tests. The updated name
   highlights the differentiating factor of this test when compared to
   the other tests _currently_ present in the file, i.e. the presence of
   `memref.subview` in the input IR.

2. Renamed `@contiguous_inner_most_dim_out_of_bounds_2d` as
   `@negative_non_unit_inner_vec_dim`. While this test does contain an
   out-of-bounds access, the actual reason for the tested pattern to
   fail is the fact that the inner dim in the output vector is not "1".
   A complimentary test was added to verify that the pattern also fails
   when the source memref has non-unit trailing dim
   (`@negative_non_unit_inner_memref_dim`).

3. Renamed `@contiguous_inner_most_dim` as
   `@contiguous_inner_most_dim_non_zero_idxs` - this test verifies that
   the pattern works in the presence of non-zero idxs.

4. Added more tests for scalable vectors - this should cover all cases
   for `vector.transfer_read`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Follow-up for: llvm#94490
@banach-space banach-space force-pushed the andrzej/update_collapse_inner_2 branch from f246e3a to 8e16ac3 Compare June 11, 2024 14:12
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 11, 2024
Restrict `DropInnerMostUnitDimsTransferRead` so that it fails when one
of the indices to be dropped could be != 0, e.g.

```
func.func @negative_example(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
  %f0 = arith.constant 0.0 : f32
  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
  return %1 : vector<8x1xf32>
}
```

This is an edge case that could represent an out-of-bounds access,
though that will depend on the actual value of `%j`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Depends on: llvm#94490, llvm#94604
@banach-space banach-space requested a review from hanhanW June 11, 2024 14:16
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 11, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, the very first test for `vector.transfer_write` is
complemented with all the possible combinations:
  * scalable (rather than fixed) unit trailing dim,
  * dynamic (rather than static) trailing dim in the source memref.

To this end, the following tests:
  * `@leading_scalable_dimension_transfer_write`
    `@trailing_scalable_one_dim_transfer_write`

are replaced with:
  * `@drop_two_inner_most_dim_scalable_inner_dim` and
    `@negative_scalable_unit_dim`,

respectively. In addition:
  * "_for_transfer_write" is removed from function names (to reduce
    noise).

This is a follow-up for: llvm#94490, llvm#94604

NOTE: This PR is limited to tests for `vector.transfer_write`.
@banach-space banach-space merged commit b83f8c7 into llvm:main Jun 12, 2024
7 checks passed
@banach-space banach-space deleted the andrzej/update_collapse_inner_2 branch June 12, 2024 07:07
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 12, 2024
Restrict `DropInnerMostUnitDimsTransferRead` so that it fails when one
of the indices to be dropped could be != 0, e.g.

```
func.func @negative_example(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
  %f0 = arith.constant 0.0 : f32
  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
  return %1 : vector<8x1xf32>
}
```

This is an edge case that could represent an out-of-bounds access,
though that will depend on the actual value of `%j`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Depends on: llvm#94490, llvm#94604
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 12, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, the very first test for `vector.transfer_write` is
complemented with all the possible combinations:
  * scalable (rather than fixed) unit trailing dim,
  * dynamic (rather than static) trailing dim in the source memref.

To this end, the following tests:
  * `@leading_scalable_dimension_transfer_write`
    `@trailing_scalable_one_dim_transfer_write`

are replaced with:
  * `@drop_two_inner_most_dim_scalable_inner_dim` and
    `@negative_scalable_unit_dim`,

respectively. In addition:
  * "_for_transfer_write" is removed from function names (to reduce
    noise).

This is a follow-up for: llvm#94490, llvm#94604

NOTE: This PR is limited to tests for `vector.transfer_write`.
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 17, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, the very first test for `vector.transfer_write` is
complemented with all the possible combinations:
  * scalable (rather than fixed) unit trailing dim,
  * dynamic (rather than static) trailing dim in the source memref.

To this end, the following tests:
  * `@leading_scalable_dimension_transfer_write`
    `@trailing_scalable_one_dim_transfer_write`

are replaced with:
  * `@drop_two_inner_most_dim_scalable_inner_dim` and
    `@negative_scalable_unit_dim`,

respectively. In addition:
  * "_for_transfer_write" is removed from function names (to reduce
    noise).

This is a follow-up for: llvm#94490, llvm#94604

NOTE: This PR is limited to tests for `vector.transfer_write`.
banach-space added a commit that referenced this pull request Jun 20, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, the very first test for `vector.transfer_write` is
complemented with all the possible combinations:
  * scalable (rather than fixed) unit trailing dim,
  * dynamic (rather than static) trailing dim in the source memref.

To this end, the following tests:
  * `@leading_scalable_dimension_transfer_write`
    `@trailing_scalable_one_dim_transfer_write`

are replaced with:
  * `@drop_two_inner_most_dim_scalable_inner_dim` and
    `@negative_scalable_unit_dim`,

respectively. In addition:
  * "_for_transfer_write" is removed from function names (to reduce
    noise).

In addition, to maintain consistency between the tests for `xfer_read`
and `xfer_write`, 2 negative tests for `xfer_read` are also renamed.
This is to follow the suggestion made during the review of this PR.

Extra comments in "VectorTransforms.cpp" are added to better
document the limitations related to scalable vectors and which tests
added here excercise.

This is a follow-up for: #94490 and #94604

NOTE: This PR is limited to tests for `vector.transfer_write`.
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 20, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, `@outer_dyn_drop_inner_most_dim` is replaced with:
  * `@contiguous_inner_most_dynamic_outer`

I am also adding a similar test for scalable vectors. In addition,
  * `@drop_two_inner_most_dim` and
    `@drop_two_inner_most_dim_scalable_inner_dim`,

are renamed as `@contiguous_inner_most_scalable_inner_dim` to match
their counterpart for xfer_read.

NOTE: This PR is limited to tests for `vector.transfer_write`

This is a follow-up for: llvm#94490, llvm#94604, llvm#94906
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jun 20, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, I am simply adding more tests for
`vector.transfer_write` so that for every test for `xfer_read`, there's
a corresponding test for `xfer_write`.

This is a follow-up for: llvm#94490, llvm#94604, llvm#94906, llvm#96214
banach-space added a commit that referenced this pull request Jun 21, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, `@outer_dyn_drop_inner_most_dim` is replaced with:
  * `@contiguous_inner_most_dynamic_outer`

I am also adding a similar test for scalable vectors. In addition,
  * `@drop_two_inner_most_dim` and
    `@drop_two_inner_most_dim_scalable_inner_dim`,

are renamed as `@contiguous_inner_most` and 
`@contiguous_inner_most_scalable_inner_dim`, respectively, to match
their counterpart for `xfer_read`.

NOTE: This PR is limited to tests for `vector.transfer_write`

This is a follow-up for: #94490, #94604, #94906
AlexisPerry pushed a commit to llvm-project-tlp/llvm-project that referenced this pull request Jul 9, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, the very first test for `vector.transfer_write` is
complemented with all the possible combinations:
  * scalable (rather than fixed) unit trailing dim,
  * dynamic (rather than static) trailing dim in the source memref.

To this end, the following tests:
  * `@leading_scalable_dimension_transfer_write`
    `@trailing_scalable_one_dim_transfer_write`

are replaced with:
  * `@drop_two_inner_most_dim_scalable_inner_dim` and
    `@negative_scalable_unit_dim`,

respectively. In addition:
  * "_for_transfer_write" is removed from function names (to reduce
    noise).

In addition, to maintain consistency between the tests for `xfer_read`
and `xfer_write`, 2 negative tests for `xfer_read` are also renamed.
This is to follow the suggestion made during the review of this PR.

Extra comments in "VectorTransforms.cpp" are added to better
document the limitations related to scalable vectors and which tests
added here excercise.

This is a follow-up for: llvm#94490 and llvm#94604

NOTE: This PR is limited to tests for `vector.transfer_write`.
AlexisPerry pushed a commit to llvm-project-tlp/llvm-project that referenced this pull request Jul 9, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, `@outer_dyn_drop_inner_most_dim` is replaced with:
  * `@contiguous_inner_most_dynamic_outer`

I am also adding a similar test for scalable vectors. In addition,
  * `@drop_two_inner_most_dim` and
    `@drop_two_inner_most_dim_scalable_inner_dim`,

are renamed as `@contiguous_inner_most` and 
`@contiguous_inner_most_scalable_inner_dim`, respectively, to match
their counterpart for `xfer_read`.

NOTE: This PR is limited to tests for `vector.transfer_write`

This is a follow-up for: llvm#94490, llvm#94604, llvm#94906
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jul 12, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, I am simply adding more tests for
`vector.transfer_write` so that for every test for `xfer_read`, there's
a corresponding test for `xfer_write`.

This is a follow-up for: llvm#94490, llvm#94604, llvm#94906, llvm#96214
banach-space added a commit that referenced this pull request Jul 15, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, I am simply adding more tests for
`vector.transfer_write` so that for every test for `xfer_read`, there's
a corresponding test for `xfer_write`.

This is a follow-up for: #94490, #94604, #94906, #96214
banach-space added a commit to banach-space/llvm-project that referenced this pull request Jul 15, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs.

In this PR, I am making the following changes:
* All input memrefs for `xfer_read` are are renamed as `%src`.
* All input memrefs for `xfer_write` are are renamed as `%dest`.
* All variables representing pad values for `xfer_read` are renamed as
  `%pad`.
* All vector variables (for `xfer_read` and `xfer_write`) are renamed as
  `%v`.
* Add `@contiguous_inner_most_non_zero_idx_in_bounds_scalable` for
  `xfer_read` (similar test already exists for `xfer_write`)
* All indiex variables are renamed as `%i` (1st index) and `%ii` (2nd
  index).

The above were marked as TODOs in the test file - these are not
resolved. In addition (to avoid sending another PR):
* `@drop_inner_most_dim` is deleted - it duplicates
  `@contiguous_inner_most` for xfer_write
* For consistency with other negative tests, renamed `@non_unit_strides`
  as `@negative_non_unit_strides` and added a similar test for
  `xfer_read`

This is a follow-up for: llvm#94490, llvm#94604, llvm#94906, llvm#96214, llvm#96227
banach-space added a commit that referenced this pull request Jul 16, 2024
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs.

In this PR, I am making the following changes:
* All input memrefs for `xfer_read` are are renamed as `%src`.
* All input memrefs for `xfer_write` are are renamed as `%dest`.
* All variables representing pad values for `xfer_read` are renamed as
  `%pad`.
* All vector variables (for `xfer_read` and `xfer_write`) are renamed as
  `%v`.
* Add `@contiguous_inner_most_non_zero_idx_in_bounds_scalable` for
  `xfer_read` (similar test already exists for `xfer_write`)
* All index variables are renamed as `%i` (1st index) and `%ii` (2nd
  index).

The above were marked as TODOs in the test file - these are not
resolved. In addition (to avoid sending another PR):
* `@drop_inner_most_dim` is deleted - it duplicates
  `@contiguous_inner_most` for xfer_write
* For consistency with other negative tests, renamed `@non_unit_strides`
  as `@negative_non_unit_strides` and added a similar test for
  `xfer_read`
* `@non_unit_strides` is renamed as `@negative_non_unit_strides` and
  a similar test is added for `xfer_read`.

This is a follow-up for: #94490, #94604, #94906, #96214, #96227
yuxuanchen1997 pushed a commit that referenced this pull request Jul 25, 2024
Summary:
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs.

In this PR, I am making the following changes:
* All input memrefs for `xfer_read` are are renamed as `%src`.
* All input memrefs for `xfer_write` are are renamed as `%dest`.
* All variables representing pad values for `xfer_read` are renamed as
  `%pad`.
* All vector variables (for `xfer_read` and `xfer_write`) are renamed as
  `%v`.
* Add `@contiguous_inner_most_non_zero_idx_in_bounds_scalable` for
  `xfer_read` (similar test already exists for `xfer_write`)
* All index variables are renamed as `%i` (1st index) and `%ii` (2nd
  index).

The above were marked as TODOs in the test file - these are not
resolved. In addition (to avoid sending another PR):
* `@drop_inner_most_dim` is deleted - it duplicates
  `@contiguous_inner_most` for xfer_write
* For consistency with other negative tests, renamed `@non_unit_strides`
  as `@negative_non_unit_strides` and added a similar test for
  `xfer_read`
* `@non_unit_strides` is renamed as `@negative_non_unit_strides` and
  a similar test is added for `xfer_read`.

This is a follow-up for: #94490, #94604, #94906, #96214, #96227

Test Plan: 

Reviewers: 

Subscribers: 

Tasks: 

Tags: 


Differential Revision: https://phabricator.intern.facebook.com/D60251592
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants