|
| 1 | +// Copyright © 2025 Apple Inc. |
| 2 | + |
| 3 | +#include "mlx/backend/cuda/device.h" |
| 4 | +#include "mlx/backend/cuda/dtype_utils.cuh" |
| 5 | +#include "mlx/backend/cuda/kernels/fp16_math.cuh" |
| 6 | +#include "mlx/backend/cuda/kernels/utils.cuh" |
| 7 | +#include "mlx/dtype_utils.h" |
| 8 | +#include "mlx/primitives.h" |
| 9 | + |
| 10 | +#include <nvtx3/nvtx3.hpp> |
| 11 | +#include <thrust/gather.h> |
| 12 | + |
| 13 | +namespace mlx::core { |
| 14 | + |
| 15 | +namespace cu { |
| 16 | + |
| 17 | +// Dispatch dynamic nidx to constexpr. |
| 18 | +#define MLX_SWITCH_NIDX(nidx, NIDX, ...) \ |
| 19 | + if (nidx <= 2) { \ |
| 20 | + constexpr uint32_t NIDX = 2; \ |
| 21 | + __VA_ARGS__; \ |
| 22 | + } else if (nidx <= 16) { \ |
| 23 | + constexpr uint32_t NIDX = 16; \ |
| 24 | + __VA_ARGS__; \ |
| 25 | + } else { \ |
| 26 | + throw std::runtime_error( \ |
| 27 | + fmt::format("Indices array can not have more than {} items", nidx)); \ |
| 28 | + } |
| 29 | + |
| 30 | +// Dispatch dynamic idx_ndim to constexpr. |
| 31 | +#define MORE_THAN_ONE MAX_NDIM |
| 32 | +#define MLX_SWITCH_IDX_NDIM(idx_ndim, IDX_NDIM, ...) \ |
| 33 | + if (idx_ndim == 0) { \ |
| 34 | + constexpr uint32_t IDX_NDIM = 0; \ |
| 35 | + __VA_ARGS__; \ |
| 36 | + } else if (idx_ndim == 1) { \ |
| 37 | + constexpr uint32_t IDX_NDIM = 1; \ |
| 38 | + __VA_ARGS__; \ |
| 39 | + } else { \ |
| 40 | + constexpr uint32_t IDX_NDIM = MORE_THAN_ONE; \ |
| 41 | + __VA_ARGS__; \ |
| 42 | + } |
| 43 | + |
| 44 | +// Convert an absolute index to positions in a 3d grid. |
| 45 | +template <typename T> |
| 46 | +struct IndexToDims { |
| 47 | + T dim0; |
| 48 | + T dim1; |
| 49 | + T dim2; |
| 50 | + |
| 51 | + __device__ cuda::std::tuple<T, T, T> index_to_dims(T index) { |
| 52 | + T x = index / (dim1 * dim2); |
| 53 | + T y = (index % (dim1 * dim2)) / dim2; |
| 54 | + T z = index % dim2; |
| 55 | + return cuda::std::make_tuple(x, y, z); |
| 56 | + } |
| 57 | +}; |
| 58 | + |
| 59 | +// Get absolute index from possible negative index. |
| 60 | +template <typename IdxT> |
| 61 | +inline __device__ auto absolute_index(IdxT idx, int32_t size) { |
| 62 | + if constexpr (cuda::std::is_unsigned_v<IdxT>) { |
| 63 | + return idx; |
| 64 | + } else { |
| 65 | + return static_cast<int32_t>(idx < 0 ? idx + size : idx); |
| 66 | + } |
| 67 | +} |
| 68 | + |
| 69 | +template <typename T, size_t NIDX, size_t IDX_NDIM> |
| 70 | +struct Indices { |
| 71 | + size_t size; |
| 72 | + size_t ndim; |
| 73 | + cuda::std::array<const T*, NIDX> buffers; |
| 74 | + cuda::std::array<bool, NIDX> row_contiguous; |
| 75 | + cuda::std::array<int32_t, NIDX * IDX_NDIM> shapes; |
| 76 | + cuda::std::array<int64_t, NIDX * IDX_NDIM> strides; |
| 77 | + |
| 78 | + template <typename Iter> |
| 79 | + Indices(Iter begin, Iter end) { |
| 80 | + size = end - begin; |
| 81 | + ndim = size > 0 ? begin->ndim() : 0; |
| 82 | + for (size_t i = 0; i < size; ++i) { |
| 83 | + const array& arr = *(begin + i); |
| 84 | + buffers[i] = arr.data<T>(); |
| 85 | + row_contiguous[i] = arr.flags().row_contiguous; |
| 86 | + std::copy_n(arr.shape().begin(), ndim, shapes.begin() + i * ndim); |
| 87 | + std::copy_n(arr.strides().begin(), ndim, strides.begin() + i * ndim); |
| 88 | + } |
| 89 | + } |
| 90 | +}; |
| 91 | + |
| 92 | +template <typename IdxT, size_t NIDX, size_t IDX_NDIM, typename LocT = int64_t> |
| 93 | +struct IndexingOp { |
| 94 | + IndexToDims<size_t> dims; |
| 95 | + size_t ndim; |
| 96 | + Shape shape; |
| 97 | + Strides strides; |
| 98 | + Shape slice_sizes; |
| 99 | + Shape axes; |
| 100 | + Indices<IdxT, NIDX, IDX_NDIM> indices; |
| 101 | + |
| 102 | + __device__ LocT operator()(size_t idx) { |
| 103 | + auto [x, y, z] = dims.index_to_dims(idx); |
| 104 | + |
| 105 | + LocT src_idx = 0; |
| 106 | + for (size_t i = 0; i < indices.size; ++i) { |
| 107 | + LocT idx_loc; |
| 108 | + if constexpr (IDX_NDIM == 0) { |
| 109 | + idx_loc = 0; |
| 110 | + } else { |
| 111 | + idx_loc = x * indices.strides[indices.ndim * i]; |
| 112 | + if constexpr (IDX_NDIM == MORE_THAN_ONE) { |
| 113 | + if (indices.row_contiguous[i]) { |
| 114 | + idx_loc += y; |
| 115 | + } else { |
| 116 | + size_t offset = indices.ndim * i + 1; |
| 117 | + idx_loc += elem_to_loc( |
| 118 | + y, |
| 119 | + indices.shapes.data() + offset, |
| 120 | + indices.strides.data() + offset, |
| 121 | + indices.ndim - 1); |
| 122 | + } |
| 123 | + } |
| 124 | + } |
| 125 | + auto ax = axes[i]; |
| 126 | + auto idx_val = absolute_index(indices.buffers[i][idx_loc], shape[ax]); |
| 127 | + src_idx += static_cast<LocT>(idx_val) * strides[ax]; |
| 128 | + } |
| 129 | + |
| 130 | + LocT src_offset = elem_to_loc(z, slice_sizes.data(), strides.data(), ndim); |
| 131 | + return src_offset + src_idx; |
| 132 | + } |
| 133 | +}; |
| 134 | + |
| 135 | +} // namespace cu |
| 136 | + |
| 137 | +void Gather::eval_gpu(const std::vector<array>& inputs, array& out) { |
| 138 | + nvtx3::scoped_range r("Gather::eval_gpu"); |
| 139 | + out.set_data(allocator::malloc(out.nbytes())); |
| 140 | + if (out.size() == 0) { |
| 141 | + return; |
| 142 | + } |
| 143 | + |
| 144 | + auto& s = stream(); |
| 145 | + auto& encoder = cu::get_command_encoder(s); |
| 146 | + for (const auto& in : inputs) { |
| 147 | + encoder.set_input_array(in); |
| 148 | + } |
| 149 | + encoder.set_output_array(out); |
| 150 | + |
| 151 | + const auto& src = inputs[0]; |
| 152 | + bool has_indices = inputs.size() > 1; |
| 153 | + auto idx_dtype = has_indices ? inputs[1].dtype() : bool_; |
| 154 | + auto idx_ndim = has_indices ? inputs[1].ndim() : 0; |
| 155 | + |
| 156 | + size_t dim0 = 1; |
| 157 | + size_t dim1 = 1; |
| 158 | + if (has_indices) { |
| 159 | + if (inputs[1].ndim() >= 1) { |
| 160 | + dim0 = inputs[1].shape(0); |
| 161 | + } |
| 162 | + if (inputs[1].ndim() >= 2) { |
| 163 | + dim1 = inputs[1].size() / dim0; |
| 164 | + } |
| 165 | + } |
| 166 | + size_t dim2 = 1; |
| 167 | + for (size_t s : slice_sizes_) { |
| 168 | + dim2 *= s; |
| 169 | + } |
| 170 | + |
| 171 | + encoder.launch_kernel([&](cudaStream_t stream) { |
| 172 | + MLX_SWITCH_ALL_TYPES(idx_dtype, CTYPE_IDX, { |
| 173 | + using IndexType = cuda_type_t<CTYPE_IDX>; |
| 174 | + if constexpr (cuda::std::is_integral_v<IndexType>) { |
| 175 | + MLX_SWITCH_NIDX(inputs.size() - 1, NIDX, { |
| 176 | + MLX_SWITCH_IDX_NDIM(idx_ndim, IDX_NDIM, { |
| 177 | + MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_DATA, { |
| 178 | + using DataType = cuda_type_t<CTYPE_DATA>; |
| 179 | + auto map_begin = thrust::make_transform_iterator( |
| 180 | + thrust::make_counting_iterator(0), |
| 181 | + cu::IndexingOp<IndexType, NIDX, IDX_NDIM>{ |
| 182 | + {dim0, dim1, dim2}, |
| 183 | + src.ndim(), |
| 184 | + cu::const_param(src.shape()), |
| 185 | + cu::const_param(src.strides()), |
| 186 | + cu::const_param(slice_sizes_), |
| 187 | + cu::const_param(axes_), |
| 188 | + {inputs.begin() + 1, inputs.end()}}); |
| 189 | + thrust::gather( |
| 190 | + cu::thrust_policy(stream), |
| 191 | + map_begin, |
| 192 | + map_begin + out.size(), |
| 193 | + src.data<DataType>(), |
| 194 | + out.data<DataType>()); |
| 195 | + }); |
| 196 | + }); |
| 197 | + }); |
| 198 | + } else { |
| 199 | + throw std::runtime_error(fmt::format( |
| 200 | + "Can not use dtype {} as index.", dtype_to_string(idx_dtype))); |
| 201 | + } |
| 202 | + }); |
| 203 | + }); |
| 204 | +} |
| 205 | + |
| 206 | +} // namespace mlx::core |
0 commit comments