Skip to content
This repository was archived by the owner on Oct 13, 2021. It is now read-only.

Add tests for bidirectional and some fix #100

Merged
merged 2 commits into from
Jun 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions keras2onnx/ke2onnx/bidirectional.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,10 +240,17 @@ def convert_bidirectional(scope, operator, container):
apply_split(scope, transposed_y_name, [forward_y_name, backward_y_name], container, axis=2)

# Change (T, N, 1, C') into (T, N, C') to meet Keras spec
container.add_node('Squeeze', forward_y_name, operator.outputs[0].full_name,
forward_y_name_1 = scope.get_unique_variable_name(operator.full_name + '_Y_forward_1')
backward_y_name_1 = scope.get_unique_variable_name(operator.full_name + '_Y_backward_1')
container.add_node('Squeeze', forward_y_name, forward_y_name_1,
name=scope.get_unique_variable_name('Squeeze'), axes=[2])
container.add_node('Squeeze', backward_y_name, operator.outputs[1].full_name,
container.add_node('Squeeze', backward_y_name, backward_y_name_1,
name=scope.get_unique_variable_name('Squeeze'), axes=[2])

apply_reshape(scope, forward_y_name_1, operator.outputs[0].full_name, container,
desired_shape=[-1, seq_length, hidden_size])
apply_reshape(scope, backward_y_name_1, operator.outputs[1].full_name, container,
desired_shape=[-1, seq_length, hidden_size])
else:
perm = [1, 0, 2]
if merge_concat:
Expand Down
41 changes: 28 additions & 13 deletions tests/test_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -642,19 +642,34 @@ def test_LSTM_reshape(self):
self.assertTrue(self.run_onnx_runtime('tf_lstm', onnx_model, data, expected))

def test_Bidirectional(self):
input_dim = 10
sequence_len = 5
model = keras.Sequential()
model.add(keras.layers.Bidirectional(keras.layers.LSTM(10, return_sequences=False),
input_shape=(5, 10)))
model.add(keras.layers.Dense(5))
model.add(keras.layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

onnx_model = keras2onnx.convert_keras(model, 'test')
data = np.random.rand(input_dim, sequence_len).astype(np.float32).reshape((1, sequence_len, input_dim))
expected = model.predict(data)
self.assertTrue(self.run_onnx_runtime('bidirectional', onnx_model, data, expected))
for return_sequences in [True, False]:
input_dim = 10
sequence_len = 5
model = keras.Sequential()
model.add(keras.layers.Bidirectional(keras.layers.LSTM(10, return_sequences=return_sequences),
input_shape=(5, 10)))
model.add(keras.layers.Dense(5))
model.add(keras.layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')

onnx_model = keras2onnx.convert_keras(model, 'test')
data = np.random.rand(input_dim, sequence_len).astype(np.float32).reshape((1, sequence_len, input_dim))
expected = model.predict(data)
self.assertTrue(self.run_onnx_runtime('bidirectional', onnx_model, data, expected))

for merge_mode in ['concat', None]:
# TODO: case return_sequences=False
for return_sequences in [True]:
input_dim = 10
sequence_len = 5
sub_input1 = keras.layers.Input(shape=(sequence_len, input_dim))
sub_mapped1 = keras.layers.Bidirectional(keras.layers.LSTM(10, return_sequences=return_sequences),
input_shape=(5, 10), merge_mode=merge_mode)(sub_input1)
keras_model = keras.Model(inputs=sub_input1, outputs=sub_mapped1)
onnx_model = keras2onnx.convert_keras(keras_model, 'test_2')
data = np.random.rand(input_dim, sequence_len).astype(np.float32).reshape((1, sequence_len, input_dim))
expected = keras_model.predict(data)
self.assertTrue(self.run_onnx_runtime('bidirectional', onnx_model, data, expected))

def test_separable_convolution(self):
N, C, H, W = 2, 3, 5, 5
Expand Down