Skip to content
This repository was archived by the owner on Oct 13, 2021. It is now read-only.

Custom Masking value #389

Merged
merged 6 commits into from
Feb 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions keras2onnx/_parser_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,9 @@ def on_parsing_keras_layer(graph, node_list, layer, kenode, model, varset, prefi
mts_var = varset.get_local_variable_or_declare_one(mts_name, infer_variable_type(om_, varset.target_opset))
operator.add_output_mask(mts_var)

if hasattr(layer, 'mask_value') and layer.mask_value is not None:
operator.mask_value = layer.mask_value

cvt = get_converter(operator.type)
if cvt is not None and hasattr(cvt, 'shape_infer'):
operator.shape_infer = cvt.shape_infer
Expand Down
1 change: 1 addition & 0 deletions keras2onnx/common/intop.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ def __init__(self, onnx_name, scope, type, raw_operator, target_opset):
self.input_masks = []
self.outputs = []
self.output_masks = []
self.mask_value = None
self.nodelist = None
self.is_evaluated = None
self.target_opset = target_opset
Expand Down
6 changes: 4 additions & 2 deletions keras2onnx/ke2onnx/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,10 @@ def convert_keras_flatten(scope, operator, container):


def _apply_not_equal(oopb, target_opset, operator):
if operator.mask_value is None:
raise ValueError("Masking value was not properly parsed for layer '{}'".format(operator.full_name))
if target_opset >= 11:
equal_out = oopb.add_node('Equal', [operator.inputs[0].full_name, np.array([0], dtype='float32')],
equal_out = oopb.add_node('Equal', [operator.inputs[0].full_name, np.array([operator.mask_value], dtype='float32')],
operator.full_name + 'mask')
not_o = oopb.add_node('Not', equal_out,
name=operator.full_name + '_not')
Expand All @@ -78,7 +80,7 @@ def _apply_not_equal(oopb, target_opset, operator):
"the masking layer result may be incorrect if the model input is in range (0, 1.0).")
equal_input_0 = oopb.add_node('Cast', [operator.inputs[0].full_name],
operator.full_name + '_input_cast', to=6)
equal_out = oopb.add_node('Equal', [equal_input_0, np.array([0], dtype='int32')],
equal_out = oopb.add_node('Equal', [equal_input_0, np.array([operator.mask_value], dtype='int32')],
operator.full_name + 'mask')
not_o = oopb.add_node('Not', equal_out,
name=operator.full_name + '_not')
Expand Down
15 changes: 15 additions & 0 deletions tests/test_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -1788,6 +1788,21 @@ def test_masking(self):
expected = model.predict(x)
self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, x, expected, self.model_files))

@unittest.skipIf(is_tf2 and is_tf_keras, 'TODO')
def test_masking_value(self):
timesteps, features = (3, 5)
mask_value = 5.
model = Sequential([
keras.layers.Masking(mask_value=mask_value, input_shape=(timesteps, features)),
LSTM(8, return_state=False, return_sequences=False)
])

onnx_model = keras2onnx.convert_keras(model, model.name)
x = np.random.uniform(100, 999, size=(2, 3, 5)).astype(np.float32)
x[1, :, :] = mask_value
expected = model.predict(x)
self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, x, expected, self.model_files))

@unittest.skipIf(is_tf2 and is_tf_keras, 'TODO')
def test_masking_custom(self):
class MyPoolingMask(keras.layers.Layer):
Expand Down