-
Notifications
You must be signed in to change notification settings - Fork 1.9k
channel program may spuriously fail with "memory limit exhausted" #11190
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Rebasing will fix the FreeBSD stable/12 build. |
@freqlabs Thanks, done. |
behlendorf
approved these changes
Nov 11, 2020
ZFS channel programs (invoked by `zfs program`) are executed in a LUA sandbox with a limit on the amount of memory they can consume. The limit is 10MB by default, and can be raised to 100MB with the `-m` flag. If the memory limit is exceeded, the LUA program exits and the command fails with a message like `Channel program execution failed: Memory limit exhausted.` The LUA sandbox allocates memory with `vmem_alloc(KM_NOSLEEP)`, which will fail if the requested memory is not immediately available. In this case, the program fails with the same message, `Memory limit exhausted`. However, in this case the specified memory limit has not been reached, and the memory may only be temporarily unavailable. This commit changes the LUA memory allocator `zcp_lua_alloc()` to use `vmem_alloc(KM_SLEEP)`, so that we won't spuriously fail when memory is temporarily low. Instead, we rely on the system to be able to free up memory (e.g. by evicting from the ARC), and we assume that even at the highest memory limit of 100MB, the channel program will not truly exhaust the system's memory. External-issue: DLPX-71924 Signed-off-by: Matthew Ahrens <[email protected]>
ghost
approved these changes
Nov 11, 2020
behlendorf
pushed a commit
that referenced
this pull request
Nov 12, 2020
ZFS channel programs (invoked by `zfs program`) are executed in a LUA sandbox with a limit on the amount of memory they can consume. The limit is 10MB by default, and can be raised to 100MB with the `-m` flag. If the memory limit is exceeded, the LUA program exits and the command fails with a message like `Channel program execution failed: Memory limit exhausted.` The LUA sandbox allocates memory with `vmem_alloc(KM_NOSLEEP)`, which will fail if the requested memory is not immediately available. In this case, the program fails with the same message, `Memory limit exhausted`. However, in this case the specified memory limit has not been reached, and the memory may only be temporarily unavailable. This commit changes the LUA memory allocator `zcp_lua_alloc()` to use `vmem_alloc(KM_SLEEP)`, so that we won't spuriously fail when memory is temporarily low. Instead, we rely on the system to be able to free up memory (e.g. by evicting from the ARC), and we assume that even at the highest memory limit of 100MB, the channel program will not truly exhaust the system's memory. External-issue: DLPX-71924 Reviewed-by: Brian Behlendorf <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Signed-off-by: Matthew Ahrens <[email protected]> Closes #11190
jsai20
pushed a commit
to jsai20/zfs
that referenced
this pull request
Mar 30, 2021
ZFS channel programs (invoked by `zfs program`) are executed in a LUA sandbox with a limit on the amount of memory they can consume. The limit is 10MB by default, and can be raised to 100MB with the `-m` flag. If the memory limit is exceeded, the LUA program exits and the command fails with a message like `Channel program execution failed: Memory limit exhausted.` The LUA sandbox allocates memory with `vmem_alloc(KM_NOSLEEP)`, which will fail if the requested memory is not immediately available. In this case, the program fails with the same message, `Memory limit exhausted`. However, in this case the specified memory limit has not been reached, and the memory may only be temporarily unavailable. This commit changes the LUA memory allocator `zcp_lua_alloc()` to use `vmem_alloc(KM_SLEEP)`, so that we won't spuriously fail when memory is temporarily low. Instead, we rely on the system to be able to free up memory (e.g. by evicting from the ARC), and we assume that even at the highest memory limit of 100MB, the channel program will not truly exhaust the system's memory. External-issue: DLPX-71924 Reviewed-by: Brian Behlendorf <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Signed-off-by: Matthew Ahrens <[email protected]> Closes openzfs#11190
sempervictus
pushed a commit
to sempervictus/zfs
that referenced
this pull request
May 31, 2021
ZFS channel programs (invoked by `zfs program`) are executed in a LUA sandbox with a limit on the amount of memory they can consume. The limit is 10MB by default, and can be raised to 100MB with the `-m` flag. If the memory limit is exceeded, the LUA program exits and the command fails with a message like `Channel program execution failed: Memory limit exhausted.` The LUA sandbox allocates memory with `vmem_alloc(KM_NOSLEEP)`, which will fail if the requested memory is not immediately available. In this case, the program fails with the same message, `Memory limit exhausted`. However, in this case the specified memory limit has not been reached, and the memory may only be temporarily unavailable. This commit changes the LUA memory allocator `zcp_lua_alloc()` to use `vmem_alloc(KM_SLEEP)`, so that we won't spuriously fail when memory is temporarily low. Instead, we rely on the system to be able to free up memory (e.g. by evicting from the ARC), and we assume that even at the highest memory limit of 100MB, the channel program will not truly exhaust the system's memory. External-issue: DLPX-71924 Reviewed-by: Brian Behlendorf <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Signed-off-by: Matthew Ahrens <[email protected]> Closes openzfs#11190
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Motivation and Context
ZFS channel programs (invoked by
zfs program
) are executed in a LUAsandbox with a limit on the amount of memory they can consume. The
limit is 10MB by default, and can be raised to 100MB with the
-m
flag.If the memory limit is exceeded, the LUA program exits and the command
fails with a message like
Channel program execution failed: Memory limit exhausted.
The LUA sandbox allocates memory with
vmem_alloc(KM_NOSLEEP)
, whichwill fail if the requested memory is not immediately available. In this
case, the program fails with the same message,
Memory limit exhausted
.However, in this case the specified memory limit has not been reached,
and the memory may only be temporarily unavailable.
Description
This commit changes the LUA memory allocator
zcp_lua_alloc()
to usevmem_alloc(KM_SLEEP)
, so that we won't spuriously fail when memory istemporarily low. Instead, we rely on the system to be able to free up
memory (e.g. by evicting from the ARC), and we assume that even at the
highest memory limit of 100MB, the channel program will not truly
exhaust the system's memory.
How Has This Been Tested?
I was able to reproduce the issue by running a channel program that allocates lots of memory in a loop, while also putting memory pressure on the system by reading from ZFS (to keep ARC pressure) and writing to tmpfs. With this change I can't reproduce the issue.
Types of changes
Checklist:
Signed-off-by
.