-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Optimize allocation throttling. #12314
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
64e01b9
to
10b1064
Compare
Can somebody comment on this? It is open for two weeks and it is not a rocket science. |
Is there any further improvement if you switch zfs_refcount_add to zfs_refcount_add_many and zfs_refcount_remove to zfs_refcount_remove_many? There is a comment claiming that refs must be added individually to be removed individually, but this seems contradictory to the implementation of zfs_refcount as an atomic uint64. Perhaps the slots were previously implemented in a different manner? Also, perhaps add a comment somewhere documenting the possible racy behavior if the functions are called with no allocation lock and neither GANG_ALLOCATION or METASLAB_MUST_RESERVE set. Although the race does appear harmless, it seems a potential pitfall for future developers who may be surprised at the resulting behavior. |
It would be good, but present implementation is required for debug builds, in which the refcount code can be made to match allocations with frees to detect any mismatches, and _many() would not match. But it affects only blocks with multiple copies, so the difference should not be very dramatic. |
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Signed-off-by: Alexander Motin <[email protected]> Sponsored-By: iXsystems, Inc.
Reviewed-by: Brian Behlendorf <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Issue #12314 Closes #12419
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Reviewed-by: Paul Dagnelie <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Reviewed-by: Don Brady <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Sponsored-By: iXsystems, Inc. Closes openzfs#12314
Reviewed-by: Brian Behlendorf <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Issue openzfs#12314 Closes openzfs#12419
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Reviewed-by: Paul Dagnelie <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Reviewed-by: Don Brady <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Closes openzfs#12314
Reviewed-by: Brian Behlendorf <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Issue openzfs#12314 Closes openzfs#12419
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Reviewed-by: Paul Dagnelie <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Reviewed-by: Don Brady <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Closes #12314
Reviewed-by: Brian Behlendorf <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Issue #12314 Closes #12419
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Reviewed-by: Paul Dagnelie <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Reviewed-by: Don Brady <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Closes openzfs#12314
Reviewed-by: Brian Behlendorf <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Issue openzfs#12314 Closes openzfs#12419
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Reviewed-by: Paul Dagnelie <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Reviewed-by: Don Brady <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Sponsored-By: iXsystems, Inc. Closes openzfs#12314
Remove mc_lock use from metaslab_class_throttle_*(). The math there is based on refcounts and so atomic, so the only race possible there is between zfs_refcount_count() and zfs_refcount_add(). But in most cases metaslab_class_throttle_reserve() is called with the allocator lock held, which covers the race. In cases where the lock is not held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we do not use zfs_refcount_count(). And even if we assume some other non-existing scenario, the worst that may happen from this race is few more I/Os get to allocation earlier, that is not a problem. Move locks and data of different allocators into different cache lines to avoid false sharing. Group spa_alloc_* arrays together into single array of aligned struct spa_alloc spa_allocs. Align struct metaslab_class_allocator. Reviewed-by: Paul Dagnelie <[email protected]> Reviewed-by: Ryan Moeller <[email protected]> Reviewed-by: Don Brady <[email protected]> Signed-off-by: Alexander Motin <[email protected]> Sponsored-By: iXsystems, Inc. Closes openzfs#12314
Remove mc_lock use from metaslab_class_throttle_*(). The math there
is based on refcounts and so atomic, so the only race possible there
is between zfs_refcount_count() and zfs_refcount_add(). But in most
cases metaslab_class_throttle_reserve() is called with the allocator
lock held, which covers the race. In cases where the lock is not
held, GANG_ALLOCATION() or METASLAB_MUST_RESERVE are set, and so we
do not use zfs_refcount_count(). And even if we assume some other
non-existing scenario, the worst that may happen from this race is
few more I/Os get to allocation earlier, that is not a problem.
Move locks and data of different allocators into different cache
lines to avoid false sharing. Group spa_alloc_* arrays together
into single array of aligned struct spa_alloc spa_allocs. Align
struct metaslab_class_allocator.
How Has This Been Tested?
On 80-thread FreeBSD system doing ~220K 16KB ZVOLs writes profiler shows reduction of lock contention on allocator locks from 7.3% to 5.8%. In case of file writes, where parallel dnode sync more actively uses multiple allocators, the difference must be more dramatic, since mc_lock is global and not per-allocator.
Types of changes
Checklist:
Signed-off-by
.