Skip to content

[ENH] Updated label_encode to use pandas factorize #847

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jul 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .requirements/base.in
Original file line number Diff line number Diff line change
Expand Up @@ -4,5 +4,4 @@
natsort
# seaborn
pandas_flavor
scikit-learn
multipledispatch
24 changes: 10 additions & 14 deletions .requirements/base.txt
Original file line number Diff line number Diff line change
@@ -1,22 +1,18 @@
#
# This file is autogenerated by pip-compile
# This file is autogenerated by pip-compile with python 3.8
# To update, run:
#
# pip-compile ./.requirements/base.in
#
joblib==0.17.0 # via scikit-learn
natsort==7.0.1 # via -r ./.requirements/base.in
numpy==1.19.2 # via pandas, scikit-learn, scipy, xarray
pandas-flavor==0.2.0 # via -r ./.requirements/base.in
pandas==1.1.3 # via pandas-flavor, xarray
python-dateutil==2.8.1 # via pandas
pytz==2020.1 # via pandas
scikit-learn==0.23.2 # via sklearn
scipy==1.5.3 # via scikit-learn
six==1.15.0 # via python-dateutil
sklearn==0.0 # via -r ./.requirements/base.in
threadpoolctl==2.1.0 # via scikit-learn
xarray==0.16.1 # via pandas-flavor
multipledispatch==0.6.0 # via -r ./.requirements/base.in
natsort==7.0.1 # via -r ./.requirements/base.in
numpy==1.19.2 # via pandas xarray
pandas==1.1.3 # via pandas-flavor xarray
pandas-flavor==0.2.0 # via -r ./.requirements/base.in
python-dateutil==2.8.1 # via pandas
pytz==2020.1 # via pandas
six==1.15.0 # via multipledispatch python-dateutil
xarray==0.16.1 # via pandas-flavor

# The following packages are considered to be unsafe in a requirements file:
# setuptools
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
- [INF] Update pre-commit hooks and remove mutable references. Issue #844. @loganthomas
- [INF] Add GitHub Release pointer to auto-release script. Issue #818. @loganthomas
- [INF] Updated black version in github actions code-checks to match pre-commit hooks. @nvamsikrishna05
- [ENH] Updated `label_encode` to use pandas factorize instead of scikit-learn LabelEncoder. @nvamsikrishna05
- [INF] Removed the scikit-learn package from the dependencies from environment-dev.yml and base.in files. @nvamsikrishna05

## [v0.21.0] - 2021-07-16

Expand Down
1 change: 0 additions & 1 deletion environment-dev.yml
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,6 @@ dependencies:
- python-language-server
- rdkit
- recommonmark
- scikit-learn
- seaborn
- sphinx
- sphinxcontrib-fulltoc
Expand Down
20 changes: 9 additions & 11 deletions janitor/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@
from pandas.api.types import is_bool_dtype, is_list_like, union_categoricals
from pandas.errors import OutOfBoundsDatetime
from scipy.stats import mode
from sklearn.preprocessing import LabelEncoder

from .errors import JanitorError
from .utils import (
Expand Down Expand Up @@ -778,24 +777,23 @@ def label_encode(
or tuple) of column names.
:returns: A pandas DataFrame.
"""
df = _label_encode(df, column_names)
warnings.warn("label_encode will be deprecated in a 1.x release")
df = _factorize(df, column_names, "_enc")
return df


@dispatch(pd.DataFrame, (list, tuple))
def _label_encode(df, column_names):
le = LabelEncoder()
@dispatch(pd.DataFrame, (list, tuple), str)
def _factorize(df, column_names, suffix, **kwargs):
check_column(df, column_names=column_names, present=True)
for col in column_names:
df[f"{col}_enc"] = le.fit_transform(df[col])
df[f"{col}{suffix}"] = pd.factorize(df[col], **kwargs)[0]
return df


@dispatch(pd.DataFrame, str) # noqa: F811
def _label_encode(df, column_names): # noqa: F811
le = LabelEncoder()
check_column(df, column_names=column_names, present=True)
df[f"{column_names}_enc"] = le.fit_transform(df[column_names])
@dispatch(pd.DataFrame, str, str)
def _factorize(df, column_name, suffix, **kwargs): # noqa: F811
check_column(df, column_names=column_name, present=True)
df[f"{column_name}{suffix}"] = pd.factorize(df[column_name], **kwargs)[0]
return df


Expand Down