Skip to content

Add custom model fwd in train pipelines #2324

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions torchrec/distributed/train_pipeline/tests/test_train_pipelines.py
Original file line number Diff line number Diff line change
Expand Up @@ -827,6 +827,54 @@ def test_multi_dataloader_pipelining(self) -> None:
)
)

# pyre-ignore
@unittest.skipIf(
not torch.cuda.is_available(),
"Not enough GPUs, this test requires at least one GPU",
)
def test_custom_fwd(
self,
) -> None:
data = self._generate_data(
num_batches=4,
batch_size=32,
)
dataloader = iter(data)

fused_params_pipelined = {}
sharding_type = ShardingType.ROW_WISE.value
kernel_type = EmbeddingComputeKernel.FUSED.value
sharded_model_pipelined: torch.nn.Module

model = self._setup_model()

(
sharded_model_pipelined,
optim_pipelined,
) = self._generate_sharded_model_and_optimizer(
model, sharding_type, kernel_type, fused_params_pipelined
)

def custom_model_fwd(
input: Optional[ModelInput],
) -> Tuple[torch.Tensor, torch.Tensor]:
loss, pred = sharded_model_pipelined(input)
batch_size = pred.size(0)
return loss, pred.expand(batch_size * 2, -1)

pipeline = TrainPipelineSparseDist(
model=sharded_model_pipelined,
optimizer=optim_pipelined,
device=self.device,
execute_all_batches=True,
custom_model_fwd=custom_model_fwd,
)

for _ in data:
# Forward + backward w/ pipelining
pred_pipeline = pipeline.progress(dataloader)
self.assertEqual(pred_pipeline.size(0), 64)


class TrainPipelinePreprocTest(TrainPipelineSparseDistTestBase):
def setUp(self) -> None:
Expand Down
28 changes: 17 additions & 11 deletions torchrec/distributed/train_pipeline/train_pipelines.py
Original file line number Diff line number Diff line change
Expand Up @@ -312,7 +312,7 @@ def __init__(
context_type: Type[TrainPipelineContext] = TrainPipelineContext,
pipeline_preproc: bool = False,
custom_model_fwd: Optional[
Callable[[In], Tuple[torch.Tensor, List[torch.Tensor]]]
Callable[[Optional[In]], Tuple[torch.Tensor, Out]]
] = None,
) -> None:
self._model = model
Expand Down Expand Up @@ -366,6 +366,10 @@ def __init__(
self._dataloader_exhausted: bool = False
self._context_type: Type[TrainPipelineContext] = context_type

self._model_fwd: Callable[[Optional[In]], Tuple[torch.Tensor, Out]] = (
custom_model_fwd if custom_model_fwd else model
)

# DEPRECATED FIELDS
self._batch_i: Optional[In] = None
self._batch_ip1: Optional[In] = None
Expand Down Expand Up @@ -483,9 +487,7 @@ def progress(self, dataloader_iter: Iterator[In]) -> Out:

# forward
with record_function("## forward ##"):
losses, output = cast(
Tuple[torch.Tensor, Out], self._model(self.batches[0])
)
losses, output = self._model_fwd(self.batches[0])

if len(self.batches) >= 2:
self.wait_sparse_data_dist(self.contexts[1])
Expand Down Expand Up @@ -718,7 +720,7 @@ def __init__(
stash_gradients: bool = False,
pipeline_preproc: bool = False,
custom_model_fwd: Optional[
Callable[[In], Tuple[torch.Tensor, List[torch.Tensor]]]
Callable[[Optional[In]], Tuple[torch.Tensor, Out]]
] = None,
) -> None:
super().__init__(
Expand All @@ -729,6 +731,7 @@ def __init__(
apply_jit=apply_jit,
context_type=EmbeddingTrainPipelineContext,
pipeline_preproc=pipeline_preproc,
custom_model_fwd=custom_model_fwd,
)
self._start_batch = start_batch
self._stash_gradients = stash_gradients
Expand All @@ -752,9 +755,6 @@ def __init__(
self._embedding_odd_streams: List[Optional[torch.Stream]] = []
self._embedding_even_streams: List[Optional[torch.Stream]] = []
self._gradients: Dict[str, torch.Tensor] = {}
self._model_fwd: Union[
torch.nn.Module, Callable[[In], Tuple[torch.Tensor, List[torch.Tensor]]]
] = (custom_model_fwd if custom_model_fwd is not None else model)

def _grad_swap(self) -> None:
for name, param in self._model.named_parameters():
Expand Down Expand Up @@ -893,7 +893,7 @@ def _mlp_forward(
_wait_for_events(
batch, context, torch.get_device_module(self._device).current_stream()
)
return cast(Tuple[torch.Tensor, Out], self._model_fwd(batch))
return self._model_fwd(batch)

def embedding_backward(self, context: EmbeddingTrainPipelineContext) -> None:
default_stream = torch.get_device_module(self._device).current_stream()
Expand Down Expand Up @@ -1020,6 +1020,10 @@ def __init__(
device: torch.device,
execute_all_batches: bool = True,
apply_jit: bool = False,
pipeline_preproc: bool = False,
custom_model_fwd: Optional[
Callable[[Optional[In]], Tuple[torch.Tensor, Out]]
] = None,
) -> None:
super().__init__(
model=model,
Expand All @@ -1028,6 +1032,8 @@ def __init__(
execute_all_batches=execute_all_batches,
apply_jit=apply_jit,
context_type=PrefetchTrainPipelineContext,
pipeline_preproc=pipeline_preproc,
custom_model_fwd=custom_model_fwd,
)
self._context = PrefetchTrainPipelineContext(version=0)
self._prefetch_stream: Optional[torch.Stream] = (
Expand Down Expand Up @@ -1084,7 +1090,7 @@ def progress(self, dataloader_iter: Iterator[In]) -> Out:
self._wait_sparse_data_dist()
# forward
with record_function("## forward ##"):
losses, output = cast(Tuple[torch.Tensor, Out], self._model(self._batch_i))
losses, output = self._model_fwd(self._batch_i)

self._prefetch(self._batch_ip1)

Expand Down Expand Up @@ -1527,7 +1533,7 @@ def __init__(
context_type: Type[TrainPipelineContext] = TrainPipelineContext,
pipeline_preproc: bool = False,
custom_model_fwd: Optional[
Callable[[In], Tuple[torch.Tensor, List[torch.Tensor]]]
Callable[[Optional[In]], Tuple[torch.Tensor, Out]]
] = None,
) -> None:
super().__init__(
Expand Down
Loading