Skip to content

More divergences with composed warmup-then-sample than combined warmup-and-sample #966

Closed
@mike-lawrence

Description

@mike-lawrence

Take the 8schools_ncp example:

library(cmdstanr)
example_program = 'schools_ncp.stan'
example_data = 'schools_ncp.data.json'
tmp <- file.path(tempdir(), example_program)
if (!file.exists(tmp)) {
  file.copy(system.file(example_program, package = "cmdstanr"), tmp)
}
mod <- cmdstan_model(tmp)
data_file <- system.file(example_data, package = "cmdstanr")

seed = 1
iter_warmup = 1e3
iter_sample = 1e3
parallel_chains = 4

#first the typical combined warmup-and-sample run:
both = mod$sample(
  data = data_file
  , chains = parallel_chains
  , parallel_chains = parallel_chains
  , refresh = 0
  , show_messages = F
  , seed = seed
  , iter_warmup = iter_warmup
  , iter_sampling = iter_sample
)

Which yields no divergences. Now an attempt at doing warmup and sampling separately, using the adapted info from the former in the latter:

warmup = mod$sample(
  data = data_file
  , chains = parallel_chains
  , parallel_chains = parallel_chains
  , refresh = 0
  , show_messages = F
  , seed = seed
  , iter_warmup = iter_warmup
  , save_warmup = T #for inits
  , sig_figs = 18
  , iter_sampling = 0
)

get_sampling_inits_from_warmup = function(chain_id){
	warmup_draws = warmup$draws(inc_warmup=T)
	final_warmup_value = warmup_draws[iter_warmup,chain_id,]
	init_list = as.list(final_warmup_value)
	names(init_list) = dimnames(final_warmup_value)[[3]]
	init_list = init_list[names(init_list)!='lp__']
	return(init_list)
}

samples = mod$sample(
  data = data_file
  , chains = parallel_chains
  , parallel_chains = parallel_chains
  , refresh = 0
  , show_messages = F
  , seed = seed
  , iter_warmup = 0
  , adapt_engaged = FALSE
  , inv_metric = warmup$inv_metric(matrix=F)
  , step_size = warmup$metadata()$step_size_adaptation
  , iter_sampling = iter_sample
  , init = get_sampling_inits_from_warmup
)

And now we get divergences from the sampling run. I have more rigorous testing of this detailed here, but the gist is that doing the warmup-then-sample approach is somehow generating more divergences than the combined warmup-and-sample approach despite to all examination all the inputs being as expected. I don't believe this is an issue with cmdstanr's passing of the pertinent info to cmdstan because I've checked the init jsons and output csvs and they have all the expected content.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions