- Code is released !!!
- Models weights are uploaded !!!
COSNet uses boundary cues along with multi-contextual information to accurately segment the objects in cluttered scenes. COSNet introduces novel components including feature sharpening block (FSB) and boundary enhancement module (BEM) for enhancing the features and highlighting the boundary information of irregular waste objects in cluttered environment.
The codebase is adapted from [PVT] repository. Please follow the instructions available here to install the mmsegmentation v0.13.0.
Requirements
pytorch v1.10.1+cu111
mmsegmentation v0.13.0
mmcv 1.4.0
You can find the datasets here:
[Zero-Waste-f] [Spectral-Waste]
You can utilize the below commands to train the COSNet:
Zero-Waste-f dataset
CUDA_VISIBLE_DEVICES=1 python train.py configs/cosnet/uper_cosnet_zerowaste_40k.py
Spectral-Waste dataset (RGB only)
CUDA_VISIBLE_DEVICES=1 python train.py configs/cosnet/uper_cosnet_specwaste_40k.py
ADE20k dataset
CUDA_VISIBLE_DEVICES=1 python train.py configs/cosnet/uper_cosnet_ade20k_160k.py
# Zero-Waste-f
python test.py configs/cosnet/uper_cosnet_zerowaste_40k.py ./zerowaste_logs/iter_40000.pth --eval mIoU
# Spectral-Waste
python test.py configs/cosnet/uper_cosnet_specwaste_40k.py ./spectralwaste_logs/iter_40000.pth --eval mIoU
# ADE20k
python test.py configs/cosnet/uper_cosnet_ade20k_160k.py ./ade20k_logs/iter_160000.pth --eval mIoU
Model | Dataset | mIoU (%) | |
---|---|---|---|
COSNet | Zero-Waste-f | 56.67 | download |
COSNet | Spectral-Waste | 69.96 | download |
COSNet | ADE20k | 48.4 | download |
Model Weights are uploaded !!!
Download the pret-training ImageNet1k weights from here
Visualizations
Examples from Zero-Waste-f
Examples from ADE20k
@InProceedings{ali_2025_cosnet_WACV,
author = {Ali, Muhammad and Javaid, Mamoona and Noman, Mubashir and Fiaz, Mustansar and Khan, Salman},
title = {COSNet: A Novel Semantic Segmentation Network using Enhanced Boundaries in Cluttered Scenes},
booktitle = {Proceedings of the Winter Conference on Applications of Computer Vision (WACV)},
month = {February},
year = {2025},
pages = {1363-1372}
}
@misc{ali2024cosnet,
title={COSNet: A Novel Semantic Segmentation Network using Enhanced Boundaries in Cluttered Scenes},
author={Muhammad Ali and Mamoona Javaid and Mubashir Noman and Mustansar Fiaz and Salman Khan},
year={2024},
eprint={2410.24139},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2410.24139},
}
FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background