ragnar
is an R package that helps implement Retrieval-Augmented
Generation (RAG) workflows. It focuses on providing a complete solution
with sensible defaults, while still giving the knowledgeable user
precise control over each step. We don’t believe that you can fully
automate the creation of a good RAG system, so it’s important that
ragnar
is not a black box. ragnar
is designed to be transparent. You
can easily inspect outputs at intermediate steps to understand what’s
happening.
You can install ragnar from CRAN with:
install.packages("ragnar")
You can install the development version from GitHub with:
# install.packages("pak")
pak::pak("tidyverse/ragnar")
ragnar
works with a wide variety of document types, using
MarkItDown to convert content
to Markdown.
Key functions:
read_as_markdown()
: Convert a file or URL to markdownragnar_find_links()
: Find all links in a webpage
Next we divide each document into chunks. Ragnar defaults to a strategy that preserves some of the semantics of the document, but provides plenty of opportunities to tweak the approach.
Key functions:
markdown_chunk()
: Full-featured chunker that identifies semantic boundaries and intelligently chunks text.
RAG applications benefit from augmenting text chunks with additional
context, such as document headings and subheadings. ragnar
makes it
easy to keep track of headings and subheadings as part of chunking.
markdown_chunk()
automatically associates each chunk with the headings
that are in scope for that chunk.
ragnar
can help compute embeddings for each chunk. The goal is for
ragnar
to provide access to embeddings from popular LLM providers.
Key functions:
embed_ollama()
embed_openai()
embed_bedrock()
embed_databricks()
embed_google_vertex()
Note that calling the embedding function directly is typically not
necessary. Instead, the embedding function is specified when a store is
first created, and then automatically called when needed by
ragnar_retrieve()
and ragnar_store_insert()
.
Processed data is stored in a format optimized for efficient searching,
using duckdb
by default. The API is designed to be extensible,
allowing additional packages to implement support for different storage
providers.
Key functions:
ragnar_store_create()
ragnar_store_connect()
ragnar_store_insert()
Given a prompt, retrieve related chunks based on embedding distance or bm25 text search.
Key functions:
ragnar_retrieve()
: high-level function that performs bothvss
andbm25
search and de-overlaps retrieved results.ragnar_retrieve_vss()
: Retrieve usingvss
DuckDB extensionragnar_retrieve_bm25()
: Retrieve usingfull-text search DuckDB extension
chunks_deoverlap()
: Consolidates retrieved chunks that overlap.
ragnar
can equip an ellmer::Chat
object with a retrieve tool that
enables an LLM to retrieve content from a store on-demand.
ragnar_register_tool_retrieve(chat, store)
.
Here’s an example of using ragnar
to create a knowledge store from the
R for Data Science (2e) book:
library(ragnar)
base_url <- "https://r4ds.hadley.nz"
pages <- ragnar_find_links(base_url)
store_location <- "r4ds.ragnar.duckdb"
store <- ragnar_store_create(
store_location,
embed = \(x) ragnar::embed_openai(x, model = "text-embedding-3-small")
)
for (page in pages) {
message("ingesting: ", page)
chunks <- page |> read_as_markdown() |> markdown_chunk()
ragnar_store_insert(store, chunks)
}
#> ingesting: https://r4ds.hadley.nz/
#> ingesting: https://r4ds.hadley.nz/arrow.html
#> ingesting: https://r4ds.hadley.nz/base-R.html
#> ingesting: https://r4ds.hadley.nz/communicate.html
#> ingesting: https://r4ds.hadley.nz/communication.html
#> ingesting: https://r4ds.hadley.nz/data-import.html
#> ingesting: https://r4ds.hadley.nz/data-tidy.html
#> ingesting: https://r4ds.hadley.nz/data-transform.html
#> ingesting: https://r4ds.hadley.nz/data-visualize.html
#> ingesting: https://r4ds.hadley.nz/databases.html
#> ingesting: https://r4ds.hadley.nz/datetimes.html
#> ingesting: https://r4ds.hadley.nz/EDA.html
#> ingesting: https://r4ds.hadley.nz/factors.html
#> ingesting: https://r4ds.hadley.nz/functions.html
#> ingesting: https://r4ds.hadley.nz/import.html
#> ingesting: https://r4ds.hadley.nz/intro.html
#> ingesting: https://r4ds.hadley.nz/iteration.html
#> ingesting: https://r4ds.hadley.nz/joins.html
#> ingesting: https://r4ds.hadley.nz/layers.html
#> ingesting: https://r4ds.hadley.nz/logicals.html
#> ingesting: https://r4ds.hadley.nz/missing-values.html
#> ingesting: https://r4ds.hadley.nz/numbers.html
#> ingesting: https://r4ds.hadley.nz/preface-2e.html
#> ingesting: https://r4ds.hadley.nz/program.html
#> ingesting: https://r4ds.hadley.nz/quarto-formats.html
#> ingesting: https://r4ds.hadley.nz/quarto.html
#> ingesting: https://r4ds.hadley.nz/rectangling.html
#> ingesting: https://r4ds.hadley.nz/regexps.html
#> ingesting: https://r4ds.hadley.nz/spreadsheets.html
#> ingesting: https://r4ds.hadley.nz/strings.html
#> ingesting: https://r4ds.hadley.nz/transform.html
#> ingesting: https://r4ds.hadley.nz/visualize.html
#> ingesting: https://r4ds.hadley.nz/webscraping.html
#> ingesting: https://r4ds.hadley.nz/whole-game.html
#> ingesting: https://r4ds.hadley.nz/workflow-basics.html
#> ingesting: https://r4ds.hadley.nz/workflow-help.html
#> ingesting: https://r4ds.hadley.nz/workflow-scripts.html
#> ingesting: https://r4ds.hadley.nz/workflow-style.html
ragnar_store_build_index(store)
Once the store is set up, you can then retrieve the most relevant text chunks.
#' ## Retrieving Chunks
library(ragnar)
store_location <- "r4ds.ragnar.duckdb"
store <- ragnar_store_connect(store_location, read_only = TRUE)
text <- "How can I subset a dataframe with a logical vector?"
#' # Retrieving Chunks
#' Once the store is set up, retrieve the most relevant text chunks like this
(relevant_chunks <- ragnar_retrieve(store, text))
#> # A tibble: 4 × 9
#> origin doc_id chunk_id start end cosine_distance bm25 context text
#> <chr> <list> <list> <int> <int> <list> <lis> <chr> <chr>
#> 1 https://r4ds.… <int> <int> 2192 4007 <dbl [1]> <dbl> "# 25 … "```…
#> 2 https://r4ds.… <int> <int> 1622 4205 <dbl [2]> <dbl> "# 12 … "```…
#> 3 https://r4ds.… <int> <int> 19379 20792 <dbl [1]> <dbl> "# 12 … "Tha…
#> 4 https://r4ds.… <int> <int> 12795 15259 <dbl [2]> <dbl> "# 24 … "The…
#' Register ellmer tool
#' You can register an ellmer tool to let the LLM retrieve chunks.
system_prompt <- stringr::str_squish(
"
You are an expert R programmer and mentor. You are concise.
Before responding, retrieve relevant material from the knowledge store. Quote or
paraphrase passages, clearly marking your own words versus the source. Provide a
working link for every source cited, as well as any additional relevant links.
Do not answer unless you have retrieved and cited a source.
"
)
chat <- ellmer::chat_openai(
system_prompt,
model = "gpt-4.1"
)
ragnar_register_tool_retrieve(chat, store, top_k = 10)
chat$chat("How can I subset a dataframe?")
#> ◯ [tool call] rag_retrieve_from_store_001(text = "How to subset a dataframe in
#> R")
#> ● #> [{"origin":"https://r4ds.hadley.nz/arrow.html","doc_id":2,"chunk_id":13,"…
#> You can subset a dataframe in R in several ways:
#>
#> 1. Using the [ (bracket) operator:
#> - Select rows and/or columns: df[rows, cols]
#> - Example:
#> ```r
#> df[1, 2] # first row, second column
#> df[, c("x","y")] # all rows, columns x and y
#> df[df$x > 1, ] # rows where x > 1, all columns
#> ```
#> If df is a tibble, the result of df[, "x"] is always a tibble; for a
#> data.frame, it returns a vector unless you use drop=FALSE: df[, "x",
#> drop=FALSE]
#> ([source](https://r4ds.hadley.nz/base-R.html#subsetting-data-frames)).
#>
#> 2. With dplyr for more readable code:
#> - Use filter() for subsetting rows and select() for columns:
#> ```r
#> library(dplyr)
#> df %>% filter(x > 1) # rows where x > 1
#> df %>% select(x, y) # columns x and y
#> df %>% filter(x > 1) %>% select(x, y) # both
#> ```
#> - Many dplyr verbs are wrappers for subsetting, e.g., filter(), arrange(), and
#> select() ([source](https://r4ds.hadley.nz/base-R.html#dplyr-equivalents)).
#>
#> 3. subset() function (base R):
#> ```r
#> subset(df, x > 1, select = c(x, y))
#> ```
#> This combines row/column subsetting in one call.
#>
#> Summary: Use df[rows, cols], dplyr's filter() and select(), or subset() for
#> subsetting dataframes.
#> - Reference: https://r4ds.hadley.nz/base-R.html#subsetting-data-frames
#> - Reference: https://dplyr.tidyverse.org/reference/filter.html
#> - Reference: https://rdrr.io/r/base/subset.html
#>
#> Let me know if you want an example with your own dataset or more details!