Skip to content

all close #2829

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 24, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions tests/test_fill_holes.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
from parameterized import parameterized

from monai.transforms import FillHoles
from tests.utils import allclose, clone
from tests.utils import assert_allclose, clone

grid_1_raw = [
[1, 1, 1],
Expand Down Expand Up @@ -278,10 +278,9 @@ def test_correct_results(self, _, args, input_image, expected):
converter = FillHoles(**args)
if isinstance(input_image, torch.Tensor) and torch.cuda.is_available():
result = converter(clone(input_image).cuda())
assert allclose(result, expected.cuda())
else:
result = converter(clone(input_image))
assert allclose(result, expected)
assert_allclose(result, expected)

@parameterized.expand(INVALID_CASES)
def test_raise_exception(self, _, args, input_image, expected_error):
Expand Down
7 changes: 2 additions & 5 deletions tests/test_flip.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,10 @@
import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import Flip
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose

INVALID_CASES = [("wrong_axis", ["s", 1], TypeError), ("not_numbers", "s", TypeError)]

Expand All @@ -40,9 +39,7 @@ def test_correct_results(self, _, spatial_axis):
expected.append(np.flip(channel, spatial_axis))
expected = np.stack(expected)
result = flip(im)
if isinstance(result, torch.Tensor):
result = result.cpu()
self.assertTrue(np.allclose(expected, result))
assert_allclose(expected, result)


if __name__ == "__main__":
Expand Down
7 changes: 2 additions & 5 deletions tests/test_flipd.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,10 @@
import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import Flipd
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose

INVALID_CASES = [("wrong_axis", ["s", 1], TypeError), ("not_numbers", "s", TypeError)]

Expand All @@ -39,9 +38,7 @@ def test_correct_results(self, _, spatial_axis):
expected.append(np.flip(channel, spatial_axis))
expected = np.stack(expected)
result = flip({"img": p(self.imt[0])})["img"]
if isinstance(result, torch.Tensor):
result = result.cpu()
assert np.allclose(expected, result)
assert_allclose(expected, result)


if __name__ == "__main__":
Expand Down
6 changes: 3 additions & 3 deletions tests/test_keep_largest_connected_component.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from parameterized import parameterized

from monai.transforms import KeepLargestConnectedComponent
from tests.utils import allclose, clone
from tests.utils import assert_allclose, clone

grid_1 = torch.tensor([[[0, 0, 1, 0, 0], [0, 2, 1, 1, 1], [1, 2, 1, 0, 0], [1, 2, 0, 1, 0], [2, 2, 0, 0, 2]]])
grid_2 = torch.tensor([[[0, 0, 0, 0, 1], [0, 0, 1, 1, 1], [1, 0, 1, 1, 2], [1, 0, 1, 2, 2], [0, 0, 0, 0, 1]]])
Expand Down Expand Up @@ -327,10 +327,10 @@ def test_correct_results(self, _, args, input_image, expected):
converter = KeepLargestConnectedComponent(**args)
if isinstance(input_image, torch.Tensor) and torch.cuda.is_available():
result = converter(clone(input_image).cuda())
assert allclose(result, expected.cuda())

else:
result = converter(clone(input_image))
assert allclose(result, expected)
assert_allclose(result, expected)

@parameterized.expand(INVALID_CASES)
def test_raise_exception(self, _, args, input_image, expected_error):
Expand Down
5 changes: 2 additions & 3 deletions tests/test_label_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
from parameterized import parameterized

from monai.transforms import LabelFilter
from tests.utils import allclose, clone
from tests.utils import assert_allclose, clone

grid_1 = torch.tensor(
[
Expand Down Expand Up @@ -108,10 +108,9 @@ def test_correct_results(self, _, args, input_image, expected):
converter = LabelFilter(**args)
if isinstance(input_image, torch.Tensor) and torch.cuda.is_available():
result = converter(clone(input_image).cuda())
assert allclose(result, expected.cuda())
else:
result = converter(clone(input_image))
assert allclose(result, expected)
assert_allclose(result, expected)

@parameterized.expand(INVALID_CASES)
def test_raise_exception(self, _, args, input_image, expected_error):
Expand Down
8 changes: 2 additions & 6 deletions tests/test_rand_axis_flip.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,24 +12,20 @@
import unittest

import numpy as np
import torch

from monai.transforms import RandAxisFlip
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose


class TestRandAxisFlip(NumpyImageTestCase2D):
def test_correct_results(self):
for p in TEST_NDARRAYS:
flip = RandAxisFlip(prob=1.0)
result = flip(p(self.imt[0]))
if isinstance(result, torch.Tensor):
result = result.cpu()

expected = []
for channel in self.imt[0]:
expected.append(np.flip(channel, flip._axis))
self.assertTrue(np.allclose(np.stack(expected), result))
assert_allclose(np.stack(expected), result)


if __name__ == "__main__":
Expand Down
7 changes: 2 additions & 5 deletions tests/test_rand_axis_flipd.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,24 +12,21 @@
import unittest

import numpy as np
import torch

from monai.transforms import RandAxisFlipd
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase3D
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase3D, assert_allclose


class TestRandAxisFlip(NumpyImageTestCase3D):
def test_correct_results(self):
for p in TEST_NDARRAYS:
flip = RandAxisFlipd(keys="img", prob=1.0)
result = flip({"img": p(self.imt[0])})["img"]
if isinstance(result, torch.Tensor):
result = result.cpu()

expected = []
for channel in self.imt[0]:
expected.append(np.flip(channel, flip._axis))
self.assertTrue(np.allclose(np.stack(expected), result))
assert_allclose(np.stack(expected), result)


if __name__ == "__main__":
Expand Down
7 changes: 2 additions & 5 deletions tests/test_rand_flip.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,10 @@
import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import RandFlip
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose

INVALID_CASES = [("wrong_axis", ["s", 1], TypeError), ("not_numbers", "s", TypeError)]

Expand All @@ -40,9 +39,7 @@ def test_correct_results(self, _, spatial_axis):
expected.append(np.flip(channel, spatial_axis))
expected = np.stack(expected)
result = flip(im)
if isinstance(result, torch.Tensor):
result = result.cpu()
self.assertTrue(np.allclose(expected, result))
assert_allclose(expected, result)


if __name__ == "__main__":
Expand Down
7 changes: 2 additions & 5 deletions tests/test_rand_flipd.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,10 @@
import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.transforms import RandFlipd
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, assert_allclose

VALID_CASES = [("no_axis", None), ("one_axis", 1), ("many_axis", [0, 1])]

Expand All @@ -27,13 +26,11 @@ def test_correct_results(self, _, spatial_axis):
for p in TEST_NDARRAYS:
flip = RandFlipd(keys="img", prob=1.0, spatial_axis=spatial_axis)
result = flip({"img": p(self.imt[0])})["img"]
if isinstance(result, torch.Tensor):
result = result.cpu()
expected = []
for channel in self.imt[0]:
expected.append(np.flip(channel, spatial_axis))
expected = np.stack(expected)
self.assertTrue(np.allclose(expected, result))
assert_allclose(expected, result)


if __name__ == "__main__":
Expand Down
25 changes: 8 additions & 17 deletions tests/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@

from monai.config import NdarrayTensor
from monai.config.deviceconfig import USE_COMPILED
from monai.config.type_definitions import NdarrayOrTensor
from monai.data import create_test_image_2d, create_test_image_3d
from monai.utils import ensure_tuple, optional_import, set_determinism
from monai.utils.module import version_leq
Expand All @@ -55,27 +56,17 @@ def clone(data: NdarrayTensor) -> NdarrayTensor:
return copy.deepcopy(data)


def allclose(a: NdarrayTensor, b: NdarrayTensor) -> bool:
def assert_allclose(a: NdarrayOrTensor, b: NdarrayOrTensor, *args, **kwargs):
"""
Check if all values of two data objects are close.

Note:
This method also checks that both data objects are either Pytorch Tensors or numpy arrays.
Assert that all values of two data objects are close.

Args:
a (NdarrayTensor): Pytorch Tensor or numpy array for comparison
b (NdarrayTensor): Pytorch Tensor or numpy array to compare against

Returns:
bool: If both data objects are close.
a (NdarrayOrTensor): Pytorch Tensor or numpy array for comparison
b (NdarrayOrTensor): Pytorch Tensor or numpy array to compare against
"""
if isinstance(a, np.ndarray) and isinstance(b, np.ndarray):
return np.allclose(a, b)

if isinstance(a, torch.Tensor) and isinstance(b, torch.Tensor):
return torch.allclose(a, b)

return False
a = a.cpu() if isinstance(a, torch.Tensor) else a
b = b.cpu() if isinstance(b, torch.Tensor) else b
np.testing.assert_allclose(a, b, *args, **kwargs)


def test_pretrained_networks(network, input_param, device):
Expand Down